Taming the chaos?! Using eXplainable Artificial Intelligence (XAI) to tackle the complexity in mental health research

被引:0
作者
Veit Roessner
Josefine Rothe
Gregor Kohls
Georg Schomerus
Stefan Ehrlich
Christian Beste
机构
[1] TU Dresden,Department of Child and Adolescent Psychiatry, Faculty of Medicine
[2] Leipzig University Medical Center,Department of Psychiatry
[3] TU Dresden,Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine
来源
European Child & Adolescent Psychiatry | 2021年 / 30卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1143 / 1146
页数:3
相关论文
共 55 条
  • [1] Whiteford HA(2015)The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study 2010 PLoS ONE 10 e2011295-e2011295
  • [2] Ferrari AJ(2020)Health care use and costs of children, adolescents, and young adults with somatic symptom and related disorders JAMA Netw Open 3 254-257
  • [3] Degenhardt L(2010)Clinical and translational science: from bench-bedside to global village Clin Transl Sci 3 564-571
  • [4] Feigin V(2014)New approaches to psychiatric diagnostic classification Neuron 84 436-442
  • [5] Vos T(2018)Global mental health and the National Institute of Mental Health Research Domain Criteria Int J Soc Psychiatry 64 184-207
  • [6] Saunders NR(2017)A theoretical framework for evaluating psychiatric research strategies Comput Psychiatry Camb Mass 1 290-307
  • [7] Gandhi S(2019)A survey on big data-driven digital phenotyping of mental health Inf Fusion 52 1601-1607
  • [8] Chen S(2018)A shared vision for machine learning in neuroscience J Neurosci Off J Soc Neurosci 38 427-440
  • [9] Vigod S(2019)Deep learning for electroencephalogram (EEG) classification tasks: a review J Neural Eng 16 1525-1535
  • [10] Fung K(2015)Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model Eur Child Adolesc Psychiatry 24 96-110