Classification of Finite p-Groups by the Size of Their Schur Multipliers

被引:0
作者
Peyman Niroomand
Farangis Johari
机构
[1] Damghan University,School of Mathematics and Computer Science
[2] Instituto de Matemática e Estatística da Universidade de São Paulo,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2022年 / 45卷
关键词
Schur multiplier; Capable groups; Finite ; -groups; Primary 20D15; Secondary 20E34; 20F18;
D O I
暂无
中图分类号
学科分类号
摘要
Let d(G) be the minimum number of elements required to generate a group G. For a group G of order pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^n$$\end{document} with a derived subgroup of order pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p^k $$\end{document} and d(G)=d,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(G) = d,$$\end{document} we know the order of the Schur multiplier of G is bounded by p12(d-1)(n-k+2)+1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p^{\frac{1}{2}(d-1)(n-k+2)+1}. $$\end{document} In this paper, we find the structure of all p-groups that obtains the mentioned bound. Moreover, we show that all of them are capable.
引用
收藏
页码:2137 / 2150
页数:13
相关论文
共 28 条
[1]  
Berkovich YG(1991)On the order of the commutator subgroup and the Schur multiplier of a finite J. Algebra 144 269-272
[2]  
Beyl FR(1979)-group J. Algebra 61 161-177
[3]  
Felgner U(1979)On groups occurring as center factor groups J. Reine Angew. Math. 309 100-113
[4]  
Schmid P(1987)Schur multipliers of J. Algebra 111 177-202
[5]  
Blackburn N(1998)-groups Proc. Am. Math. Soc. 126 2513-2523
[6]  
Evens L(1999)Some computations of non-abelian tensor products of groups Commun. Algebra 27 4173-4177
[7]  
Brown R(1999)A bound for the derived and Frattini subgroups of a prime-power group Bull. Austral. Math. Soc. 60 191-196
[8]  
Johnson DL(2001)On the Schur multiplier of Trans. Am. Math. Soc. 353 4219-4234
[9]  
Robertson EF(1956)-groups Proc. R. Soc. Lond. 237 574-581
[10]  
Ellis G(2017)A bound on the Schur multiplier of a prime-power group J. Algebra 492 490-497