Sharp Global Well-Posedness for the Cubic Nonlinear Schrödinger Equation with Third Order Dispersion

被引:1
作者
Carvajal, X. [1 ]
Panthee, M. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, RJ, Brazil
[2] Univ Estadual Campinas, Dept Math, BR-13083859 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会; 瑞典研究理事会;
关键词
Schrodinger equation; Korteweg-de Vries equation; Initial value problem; Local and global well-posedness; Sobolev spaces; Almost conservation law; SCHRODINGER-EQUATIONS; OPTICAL SOLITONS; KDV;
D O I
10.1007/s00041-024-10084-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem (IVP) associated to the cubic nonlinear Schr & ouml;dinger equation with third-order dispersion partial derivative(t)u + i alpha partial derivative(2)(x)u - partial derivative(3)(x)u + i beta|u|(2)u = 0, x, t is an element of R, for given data in the Sobolev space Hs(R). This IVP is known to be locally well-posed for given data with Sobolev regularity s > -1/4 and globally well-posed for s >= 0 (Carvajal in Electron J Differ Equ 2004:1-10, 2004). For given data in H-s(R), 0 > s > -1/4 no global well-posedness result is known. In this work, we derive an almost conserved quantity for such data and obtain a sharp global well-posedness result. Our result answers the question left open in (Carvajal in Electron J Differ Equ 2004:1-10, 2004).
引用
收藏
页数:23
相关论文
共 25 条
[1]  
Agrawal GP, 2013, Nonlinear fiber optics, V5th
[2]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107, DOI DOI 10.1007/BF01896020
[3]   Sharp global well-posedness for a higher order Schrodinger equation [J].
Carvajal, X .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (01) :53-70
[4]  
Carvajal X., 2022, Partial Differ. Equ. Appl, V3, P21, DOI [10.1007/s42985-022-00200-4, DOI 10.1007/S42985-022-00200-4]
[5]  
Carvajal X, 2013, Q APPL MATH, V71, P267
[6]  
Carvajal X, 2004, ELECTRON J DIFFER EQ
[7]   Solitonic dynamics and excitations of the nonlinear Schrodinger equation with third-order dispersion in non-Hermitian PT -symmetric potentials [J].
Chen, Yong ;
Yan, Zhenya .
SCIENTIFIC REPORTS, 2016, 6
[8]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[9]   Global well-posedness for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :649-669
[10]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749