Analysis of a mosquito-borne disease transmission model with vector stages and nonlinear forces of infection

被引:9
作者
Avila-Vales E. [1 ]
Buonomo B. [2 ]
机构
[1] Universidad Autónoma de Yucatán, Anillo Periférico Norte, Tablaje 13615, Mérida
[2] Department of Mathematics and Applications, University of Naples Federico II, via Cintia, Naples
关键词
Bifurcation analysis; Endemic equilibrium; Mosquito-borne disease;
D O I
10.1007/s11587-015-0245-9
中图分类号
学科分类号
摘要
We study a mosquito-borne epidemic model where the vector population is distinct in aquatic and adult stages and a saturating effect of disease transmission is assumed to occur when the population of infectious carriers becomes large enough. A qualitative analysis, including centre manifold analysis, has been performed to determine the existence of stability–instability thresholds. © 2015, Università degli Studi di Napoli "Federico II".
引用
收藏
页码:377 / 390
页数:13
相关论文
共 40 条
[1]  
Adongo D., Fister K.R., Gaff H., Hartley D., Optimal control applied to Rift Valley fever, Nat. Res. Model., 26, pp. 385-402, (2013)
[2]  
Anderson R.M., May R.M., Infectious Diseases in Humans: Dynamics and Control, (1991)
[3]  
Anita S., Capasso V., Stabilization of a reaction–diffusion system modelling malaria transmission, Discret. Contin. Dyn. Syst. B, 17, pp. 1673-1684, (2012)
[4]  
Benedict M.Q., Levine R.S., Hawley W.A., Lounibos L.P., Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus, Vector Borne Zoonotic Dis., 7, pp. 76-85, (2007)
[5]  
Buonomo B., Vargas De-Leon C., Stability and bifurcation analysis of a vector-bias model of malaria transmission, Math. Biosci., 242, pp. 59-67, (2013)
[6]  
Cai L., Guo S., Li X.Z., Ghosh M., Global dynamics of a dengue epidemic mathematical model, Chaos Solitons Fractals, 42, pp. 2297-2304, (2009)
[7]  
Cai L.M., Li X.Z., Global analysis of a vector–host epidemic model with nonlinear incidences, Appl. Math. Comput., 217, pp. 3531-3541, (2010)
[8]  
Capasso V., Mathematical Structures of Epidemic Systems, Lecture Notes in Biomathematics, 97, (1993)
[9]  
Capasso V., Grosso E., Serio G., I modelli matematici nella indagine epidemiologica. Applicazione all’epidemia di colera verificatasi in Bari nel 1973 (italian), Ann. Sclavo, 19, pp. 193-208, (1977)
[10]  
Capasso V., Serio G., A generalization of the Kermack–Mc Kendrick deterministic epidemic model, Math. Biosci., 42, pp. 41-61, (1978)