Supermembrane interaction with dynamical D = 4 N = 1 supergravity. Superfield Lagrangian description and spacetime equations of motion

被引:0
作者
Igor A. Bandos
Carlos Meliveo
机构
[1] University of the Basque Country,Department of Theoretical Physics
[2] IKERBASQUE,undefined
[3] The Basque Foundation for Science,undefined
来源
Journal of High Energy Physics | / 2012卷
关键词
Brane Dynamics in Gauge Theories; p-branes; Superspaces; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the complete set of equations of motion for the interacting system of supermembrane and dynamical D = 4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 supergravity by varying its complete superfield action and writing the resulting superfield equations in the special \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ ``{\text{W}}{{\text{Z}}_{{\widehat{\theta } = 0}}}'' $\end{document} gauge where the supermembrane Goldstone field is set to zero \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left( {\widehat{\theta } = 0} \right) $\end{document}. We solve the equations for auxiliary fields and discuss the effect of dynamical generation of cosmological constant in the Einstein equation of interacting system and its renormalization due to some regular contributions from supermembrane. These two effects (discussed in late 70th and 80th, in the bosonic perspective and in the supergravity literature) result in that, generically, the cosmological constant has different values in the branches of the spacetime separated by the supermembrane worldvolume.
引用
收藏
相关论文
共 125 条
[41]  
Ortín T(1978)Superfield Lagrangian for supergravity Phys. Lett. B 74 51-undefined
[42]  
Papadopoulos G(1978)Structure of supergravity group Phys. Lett. B 79 222-undefined
[43]  
Bandos IA(1980)The gravitational axial superfield and the formalism of differential geometry Sov. J. Nucl. Phys. 31 424-undefined
[44]  
de Azcárraga JA(1980)Torsion and curvature in terms of the axial gravitational superfield Sov. J. Nucl. Phys. 32 447-undefined
[45]  
Izquierdo JM(1978)Solution to constraints in Wess-Zumino supergravity formalism Nucl. Phys. B 142 301-undefined
[46]  
Volkov DV(1977)Superspace formulation of supergravity Phys. Lett. B 66 361-undefined
[47]  
Akulov VP(1989)Superspace geometry and classification of supersymmetric extended objects Phys. Rev. Lett. 62 2579-undefined
[48]  
Volkov DV(1989)Topological extensions of the supersymmetry algebra for extended objects Phys. Rev. Lett. 63 2443-undefined
[49]  
Akulov VP(2009)From linear SUSY to constrained superfields JHEP 09 066-undefined
[50]  
Bandos IA(2010)Variant supercurrent multiplets JHEP 04 022-undefined