An improved analysis of proton structure function F2(x,t) at small x

被引:0
作者
Luxmi Machahari
D. K. Choudhury
机构
[1] Gauhati University,Department of Physics
[2] Physics Academy of North-East,undefined
来源
The European Physical Journal A | 2018年 / 54卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We report an improved analysis of Taylor approximated coupled DGLAP equations for singlet F2S(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{2}^{S}(x,t)$\end{document} and gluon G(x,t) distributions at small x pursued in recent years. To that end, we assume a plausible t-dependent relation between the singlet and gluon distribution valid at small x and omit the boundary condition F2S(1,t)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{2}^{S} (1, t) = 0$\end{document}, for any t which needs large x extrapolation of small x solution. We observe that in general two inequivalent t-evolutions of F2S(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ F_{2}^{S} (x, t)$\end{document} and G(x, t) are possible. Theoretical advantages of one over the other are discussed and compared with the recently compiled data in order to choose the best one. Phenomenological range of validity of solutions is also reported.
引用
收藏
相关论文
共 71 条
[1]  
Gribov V.N.(1972)undefined Sov. J. Nucl. Phys. 438 15-undefined
[2]  
Lipatov L.N.(1975)undefined Sov. J. Nucl. Phys. 20 94-undefined
[3]  
Lipatov L.N.(1977)undefined Sov. Phys. JETP 46 641-undefined
[4]  
Dokshitzer Yu.L.(1977)undefined Nucl. Phys. B 126 298-undefined
[5]  
Altarelli G.(2002)undefined Comput. Phys. Commun. 143 287-undefined
[6]  
Parisi G.(1978)undefined Nucl. Phys. B 137 395-undefined
[7]  
Toldrà R.(2001)undefined Phys. Rev. D 64 114007-undefined
[8]  
Cabibbo N.(1990)undefined Z. Phys. C 48 471-undefined
[9]  
Petronzio R.(2001)undefined Phys. Rev. D 63 116004-undefined
[10]  
Stratmann M.(1992)undefined Pramana J. Phys. 38 481-undefined