Feasible Perturbations of Control Systems with Pure State Constraints and Applications to Second-Order Optimality Conditions

被引:0
作者
Daniel Hoehener
机构
[1] Université Pierre et Marie Curie,Combinatoire & Optimisation, Institut de Mathématiques de Jussieu (UMR 7586)
来源
Applied Mathematics & Optimization | 2013年 / 68卷
关键词
Optimal control; Pontryagin’s maximum principle; Second-order necessary optimality conditions; Second-order tangents; Feasible perturbations;
D O I
暂无
中图分类号
学科分类号
摘要
We propose second-order necessary optimality conditions for optimal control problems with very general state and control constraints which hold true under weak regularity assumptions on the data. In particular the pure state constraints are general closed sets, the optimal control is supposed to be merely measurable and the dynamics may be discontinuous in the time variable as well. These results are obtained by an approach based on local perturbations of the reference process by second-order tangent directions. This method allows direct and quite simple proofs.
引用
收藏
页码:219 / 253
页数:34
相关论文
共 67 条
[1]  
Auslender A.(1984)Stability in mathematical programming with nondifferentiable data SIAM J. Control Optim. 22 239-254
[2]  
Bettiol P.(2007)Normality of the maximum principle for nonconvex constrained Bolza problems J. Differ. Equ. 243 256-269
[3]  
Frankowska H.(2009)No-gap second-order optimality conditions for optimal control problems with a single state constraint and control Math. Program. 117 21-50
[4]  
Bonnans J.F.(2009)Revisiting the analysis of optimal control problems with several state constraints Control Cybern. 38 1021-1052
[5]  
Hermant A.(2009)Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 561-598
[6]  
Bonnans J.F.(1984)Multivalued mappings J. Sov. Math. 24 719-791
[7]  
Hermant A.(2005)A connection between the maximum principle and dynamic programming for constrained optimal control problems SIAM J. Control Optim. 44 673-703
[8]  
Bonnans J.F.(1987)Second-order directional derivatives for nonsmooth functions J. Math. Anal. Appl. 128 495-511
[9]  
Hermant A.(1975)Generalized gradients and applications Trans. Am. Math. Soc. 205 247-262
[10]  
Borisovich Y.G.(2009)The nonsmooth maximum principle Control Cybern. 38 1151-1167