Strategies to improve deep learning-based salivary gland segmentation

被引:0
作者
Ward van Rooij
Max Dahele
Hanne Nijhuis
Berend J. Slotman
Wilko F. Verbakel
机构
[1] Vrije Universiteit Amsterdam,Department of Radiation Oncology, Cancer Center Amsterdam
[2] Amsterdam UMC,undefined
来源
Radiation Oncology | / 15卷
关键词
Artificial intelligence; Deep learning; Salivary glands; Segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 32 条
  • [1] Brouwer CL(2012)3D variation in delineation of head and neck organs at risk Radiat Oncol 7 32-90
  • [2] Steenbakkers RJ(2015)CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines Radiother Oncol 117 83-S63
  • [3] van den Heuvel E(2010)Radiotherapy dose-volume effects on salivary gland function Int J Radiat Oncol Biol Phys 76 S58-684
  • [4] Brouwer CL(2019)Deep learning-based delineation of head and neck organs-at-risk: geometric and dosimetric evaluation Int J Radiat Oncol Biol Phys 104 677-394
  • [5] Steenbakkers RJ(2006)Symmetry of the submandibular glands in humans: a postmortem study assessing the linear morphometric parameters Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102 391-1958
  • [6] Bourhis J(2014)Dropout: a simple way to prevent neural networks from overfitting J Mach Learn Res 15 1929-984
  • [7] Deasy JO(2017)Differential data augmentation techniques for medical imaging classification tasks AMIA Annu Symp Proc 2017 979-196
  • [8] Moiseenko V(2018)Is accurate contouring of salivatory and swallowing structures necessary to spare them in head and neck VMAT plans? Radiother Oncol 127 190-1001
  • [9] Marks L(1990)Neural network ensembles Trans Pattern Anal Mach Intell 12 993-S282
  • [10] Van Rooij W(2018)Evaluation of deep learning methods for parotid gland segmentation J Med Imaging 127 S281-undefined