On the second largest eigenvalue of networks

被引:0
作者
Ankit Mishra
Ranveer Singh
Sarika Jalan
机构
[1] Indian Institute of Technology Indore,Department of Physics
[2] Indian Institute of Technology Indore,Computer science and Engineering
来源
Applied Network Science | / 7卷
关键词
Networks; Spectra;
D O I
暂无
中图分类号
学科分类号
摘要
From predicting the epidemic threshold of a disease outbreak to anticipating the stability of a complex system, analysis of spectra of the adjacency matrices of the underlying networks play a pivotal role. Despite spectra of networks considered as fingerprints of the corresponding complex systems, most works and review articles have circumscribed around the largest eigenvalue (λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1$$\end{document}) only. The second largest eigenvalue of a network that admits many applications in diverse fields, including mathematics and computer science, has not been thoroughly contemplated. This article first reviews existing literature on λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2$$\end{document}, predominantly confined to the random regular graphs, followed by the results for various popular model networks. We emphasize the aspect that λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2$$\end{document} shows an entirely different behavior than λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On the second largest eigenvalue of networks
    Mishra, Ankit
    Singh, Ranveer
    Jalan, Sarika
    APPLIED NETWORK SCIENCE, 2022, 7 (01)
  • [2] Normalized Connectomes Show Increased Synchronizability with Age through Their Second Largest Eigenvalue
    Nicola, Wilten
    Campbell, Sue Ann
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (02) : 1158 - 1176
  • [3] Sharp Bounds for the Largest Eigenvalue
    Mulas, R.
    MATHEMATICAL NOTES, 2021, 109 (1-2) : 102 - 109
  • [4] The Complete Classification of Graphs whose Second Largest Eigenvalue of the Eccentricity Matrix is Less Than 1
    Wang, Jian Feng
    Lei, Xing Yu
    Li, Shu Chao
    Stanic, Zoran
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (07) : 1741 - 1766
  • [5] Interplay of inhibition and multiplexing: Largest eigenvalue statistics
    Ghosh, Saptarshi
    Dwivedi, Sanjiv K.
    Ivanchenko, Mikhail V.
    Jalan, Sarika
    EPL, 2016, 115 (01)
  • [6] Distributed Largest Eigenvalue-Based Spectrum Sensing Using Diffusion LMS
    Ainomae, Ahti
    Bengtsson, Mats
    Trump, Tonu
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2018, 4 (02): : 362 - 377
  • [7] On the Definiteness and the Second Smallest Eigenvalue of Signed Laplacian Matrices
    Li, Shuang
    Xia, Weiguo
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 (2347-2352): : 2347 - 2352
  • [8] ON THE FIRST AND SECOND EIGENVALUE OF FINITE AND INFINITE UNIFORM HYPERGRAPHS
    Li, Hong-Hai
    Mohar, Bojan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 933 - 946
  • [9] Eigenvalue ratio statistics of complex networks: Disorder versus randomness
    Mishra, Ankit
    Raghav, Tanu
    Jalan, Sarika
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [10] A NEW PROOF OF FRIEDMANOS SECOND EIGENVALUE THEOREM AND ITS EXTENSION TO RANDOM LIFTS
    Bordenave, Charles
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (06): : 1393 - 1439