Observables on lexicographic effect algebras

被引:0
作者
Anatolij Dvurečenskij
Dominik Lachman
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký University Olomouc,Faculty of Sciences
来源
Algebra universalis | 2019年 / 80卷
关键词
Effect algebra; Lexicographic effect algebra; Monotone ; -complete po-group; Observable; Spectral resolution; Finiteness property; 03G12; 03B50; 06C15; 81P15;
D O I
暂无
中图分类号
学科分类号
摘要
We study lexicographic effect algebras which are intervals in lexicographic products H×→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\,\overrightarrow{\times }\,G$$\end{document}, where (H, u) is a unital po-group and G is a monotone σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-complete po-group with interpolation. We prove that there is a one-to-one correspondence between observables, which are a special kind of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-homomorphisms and analogues of measurable functions, and spectral resolutions which are systems {xt:t∈R}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_t : t \in {\mathbb {R}}\}$$\end{document} of elements of a lexicographic effect algebra that are monotone, “left continuous”, and going to 0 if t→-∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow -\infty $$\end{document} and to 1 if t→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow +\infty $$\end{document}. We show that this correspondence in lexicographic effect algebras holds only for spectral resolutions with the finiteness property. Otherwise, they do not determine any observable. Whence, the information involved in a spectral resolution with the finiteness property completely describes information about an observable.
引用
收藏
相关论文
共 17 条
[1]  
Buhagiar D(2006)Loomis-Sikorski representation of monotone Fuzzy Sets Syst. 157 683-690
[2]  
Chetcuti E(1968)-complete effect algebras Int. J. Theor. Phys. 1 285-297
[3]  
Dvurečenskij A(2019)Spectral theory in quantum logics Fuzzy Sets Syst. 369 57-81
[4]  
Catlin D(2015)Observables on perfect MV-algebras J. Appl. Log. 13 270-284
[5]  
Di Nola A(2007)Gödel spaces and perfect MV-algebras J. Aust. Math. Soc. 82 183-207
[6]  
Dvurečenskij A(2014)Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups Int. J. Theor. Phys. 53 2855-2866
[7]  
Lenzi G(2016)Representable effect algebras and observables Algebra Universalis 75 451-480
[8]  
Di Nola A(2019)Lexicographic effect algebras Found. Phys. 49 607-628
[9]  
Grigolia R(2014)Perfect effect algebras and spectral resolutions of observables Inf. Sci. 262 215-222
[10]  
Dvurečenskij A(1994)Observables on quantum structures Found. Phys. 24 1325-1346