Release of elements from municipal solid waste incineration fly ash

被引:0
|
作者
Wei Wang
Lei Zheng
Feng Wang
Xiao Wan
Keqing Yin
Xingbao Gao
机构
[1] Tsinghua University,Department of Environmental Science and Engineering
来源
Frontiers of Environmental Science & Engineering in China | 2010年 / 4卷
关键词
pH; test; Serial single reaction cell test (SSRC); leaching; heavy metal;
D O I
暂无
中图分类号
学科分类号
摘要
The element-release behavior of municipal solid waste incineration fly ash was explored through leaching test with continuous set-point pH (pHstat test) and serial single reaction cell (SSRC) tests. First, the relationship between element release and acid neutralizing capacity (ANC) consumption was examined with a pHstat test. Four types of release behaviors were identified which are characteristic for different elements: (1) release curves that were almost linear with ANC consumption (Ca, Zn, and Cd); (2) release that was significantly faster than ANC (Na, K, and Cl); (3) curves that featured a strong increase with ANC consumption, after a transient release, followed by an almost equal decrease (Si and S); and (4) release that is strongly retarded compared with ANC consumption (Cr, Cu, and Pb). In the SSRC system, it the existence of a pH front and a wash-out phenomenon is demonstrated. Combining the results from the SSRC test with the kinetic analysis of the ANC system in the pHstat test, it was inferred that less than one-third of the ANC measured from a batch pH titration plays a neutralization role in a field situation. The methodologies described may provide a powerful set of tools for systematic evaluation of element release from solid wastes.
引用
收藏
页码:482 / 489
页数:7
相关论文
共 50 条
  • [1] Release of elements from municipal solid waste incineration fly ash
    Wang, Wei
    Zheng, Lei
    Wang, Feng
    Wan, Xiao
    Yin, Keqing
    Gao, Xingbao
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING IN CHINA, 2010, 4 (04): : 482 - 489
  • [2] Leaching Characteristics of Trace Elements from Municipal Solid Waste Incineration Fly Ash
    Zhang, Yibo
    Chen, Jiannan
    Likos, William J.
    Edil, Tuncer B.
    Geo-Chicago 2016: Sustainable Waste Management and Remediation, 2016, (273): : 168 - 178
  • [3] Treatment technologies of fly ash from municipal solid waste incineration
    Kong, Xiangrui
    Dong, Yuecen
    Zhang, Mengyu
    Wang, Biao
    Yin, Shui′e
    Chen, Bing
    Lu, Jiawei
    Zhang, Yuan
    Feng, Lele
    Wang, Hongtao
    Xu, Haiyun
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (07): : 4102 - 4117
  • [4] Phosphorus recovery from municipal solid waste incineration fly ash
    Kalmykova, Yuliya
    Fedje, K. Karlfeldt
    WASTE MANAGEMENT, 2013, 33 (06) : 1403 - 1410
  • [5] Recovery of Zinc from Municipal Solid Waste Incineration Fly Ash
    Yen, Chen-Piao
    Shen, Yun-Hwei
    Chiu, Kai-Lun
    Huang, Hsin-Hsiang
    SCIENCE OF ADVANCED MATERIALS, 2021, 13 (05) : 956 - 965
  • [6] Thermal separation of zinc and other valuable elements from municipal solid waste incineration fly ash
    Lane, Daniel J.
    Hartikainen, Aki
    Sippula, Olli
    Lahde, Anna
    Mesceriakovas, Arunas
    Peraniemi, Sirpa
    Jokiniemi, Jorma
    JOURNAL OF CLEANER PRODUCTION, 2020, 253
  • [7] The Cement Solidification of Municipal Solid Waste Incineration Fly Ash
    侯浩波
    贺杏华
    Journal of Wuhan University of Technology(Materials Science Edition), 2006, (04) : 137 - 140
  • [8] Hydrothermal solidification of municipal solid waste incineration fly ash
    Shan, Chengchong
    Jing, Zhenzi
    Pan, Lili
    Zhou, Lei
    Pan, Xiaohui
    Lu, Lei
    RESEARCH ON CHEMICAL INTERMEDIATES, 2011, 37 (2-5) : 551 - 565
  • [9] The cement solidification of municipal solid waste incineration fly ash
    Hou H.
    He X.
    Zhu S.
    Zhang D.
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2006, 21 (4): : 137 - 140
  • [10] Municipal Solid Waste Incineration Fly Ash: From Waste to Cement Manufacturing Resource
    Marieta, Cristina
    Martin-Garin, Alexander
    Leon, Inigo
    Guerrero, Ana
    MATERIALS, 2023, 16 (06)