A branch and cut algorithm for minimum spanning trees under conflict constraints

被引:0
作者
Phillippe Samer
Sebastián Urrutia
机构
[1] Universidade Federal de Minas Gerais (UFMG),
来源
Optimization Letters | 2015年 / 9卷
关键词
Optimal trees; Conflict constraints; Stable set ; Branch and cut; 90C27; 90C57;
D O I
暂无
中图分类号
学科分类号
摘要
We study approaches for the exact solution of the NP-hard minimum spanning tree problem under conflict constraints. Given a graph G(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(V,E)$$\end{document} and a set C⊂E×E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \subset E \times E$$\end{document} of conflicting edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e. feasible solutions are allowed to include at most one of the edges from each pair in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}. The problem was introduced recently in the literature, with several results on its complexity and approximability. Some formulations and both exact and heuristic algorithms were also discussed, but computational results indicate considerably large duality gaps and a lack of optimality certificates for benchmark instances. In this paper, we build on the representation of conflict constraints using an auxiliary conflict graph G^(E,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{G}(E,C)$$\end{document}, where stable sets correspond to conflict-free subsets of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}. We introduce a general preprocessing method and a branch and cut algorithm using an IP formulation with exponentially sized classes of valid inequalities for both the spanning tree and the stable set polytopes. Encouraging computational results indicate that the dual bounds of our approach are significantly stronger than those previously available, already in the initial LP relaxation, and we are able to provide new feasibility and optimality certificates.
引用
收藏
页码:41 / 55
页数:14
相关论文
共 35 条
  • [1] Achterberg T(2007)Conflict analysis in mixed integer programming Discret. Optim. 4 4-20
  • [2] Atamtürk A(2000)Conflict graphs in solving integer programming problems Eur. J. Oper. Res. 121 40-55
  • [3] Nemhauser GL(1986)Finding a maximum clique in an arbitrary graph SIAM J. Comput. 15 1054-1068
  • [4] Savelsbergh MW(2011)Paths, trees and matchings under disjunctive constraints Discret. Appl. Math. 159 1726-1735
  • [5] Balas E(2011)LEMON—an open source C++ graph template library Electron. Notes Theor. Comput. Sci. 264 23-45
  • [6] Yu C(1971)Matroids and the greedy algorithm Math. Program. 1 127-136
  • [7] Darmann A(1988)A new approach to the maximum-flow problem J. ACM 35 921-940
  • [8] Pferschy U(2013)The minimum cost perfect matching problem with conflict pair constraints Comput. Oper. Res. 40 920-930
  • [9] Schauer J(1973)On the facial structure of set packing polyhedra Math. Program. 5 199-215
  • [10] Woeginger GJ(2009)The knapsack problem with conflict graphs J. Graph Algortihms Appl. 13 233-249