Almost difference sets in nonabelian groups

被引:0
作者
Jerod Michel
Qi Wang
机构
[1] Southern University of Science and Technology,Department of Computer Science and Engineering
来源
Designs, Codes and Cryptography | 2019年 / 87卷
关键词
Difference set; Almost difference set; Nonabelian group; 05B10; 05B30; 51E30; 11T22; 94C30;
D O I
暂无
中图分类号
学科分类号
摘要
We give two new constructions of almost difference sets. The first is a generic construction of (q2(q+1),q(q2-1),q(q2-q-1),q2-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q^{2}(q+1),\,q(q^{2}-1),\,q(q^{2}-q-1),\,q^{2}-1)$$\end{document} almost difference sets in certain groups of order q2(q+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{2}(q+1)$$\end{document} (q is an odd prime power) having (Fq2,+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^{2}},\,+)$$\end{document} as a subgroup. This construction yields several infinite families of almost difference sets, many of which occur in nonabelian groups. The second construction yields (4p,2p+1,p,p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(4p,\,2p+1,\,p,\,p-1)$$\end{document} almost difference sets in dihedral groups of order 4p where p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3 \ (\mathrm{mod} \ 4)$$\end{document} is a prime. Moreover, it turns out that some of the infinite families of almost difference sets obtained produce Cayley graphs which are Ramanujan graphs.
引用
收藏
页码:1243 / 1251
页数:8
相关论文
共 45 条
[41]  
Wang Z(undefined)undefined undefined undefined undefined-undefined
[42]  
Xiang Q(undefined)undefined undefined undefined undefined-undefined
[43]  
Zhang Y(undefined)undefined undefined undefined undefined-undefined
[44]  
Lei JG(undefined)undefined undefined undefined undefined-undefined
[45]  
Zhang SP(undefined)undefined undefined undefined undefined-undefined