Almost difference sets in nonabelian groups

被引:0
作者
Jerod Michel
Qi Wang
机构
[1] Southern University of Science and Technology,Department of Computer Science and Engineering
来源
Designs, Codes and Cryptography | 2019年 / 87卷
关键词
Difference set; Almost difference set; Nonabelian group; 05B10; 05B30; 51E30; 11T22; 94C30;
D O I
暂无
中图分类号
学科分类号
摘要
We give two new constructions of almost difference sets. The first is a generic construction of (q2(q+1),q(q2-1),q(q2-q-1),q2-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q^{2}(q+1),\,q(q^{2}-1),\,q(q^{2}-q-1),\,q^{2}-1)$$\end{document} almost difference sets in certain groups of order q2(q+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{2}(q+1)$$\end{document} (q is an odd prime power) having (Fq2,+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^{2}},\,+)$$\end{document} as a subgroup. This construction yields several infinite families of almost difference sets, many of which occur in nonabelian groups. The second construction yields (4p,2p+1,p,p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(4p,\,2p+1,\,p,\,p-1)$$\end{document} almost difference sets in dihedral groups of order 4p where p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3 \ (\mathrm{mod} \ 4)$$\end{document} is a prime. Moreover, it turns out that some of the infinite families of almost difference sets obtained produce Cayley graphs which are Ramanujan graphs.
引用
收藏
页码:1243 / 1251
页数:8
相关论文
共 45 条
[1]  
Arasu KT(2001)Almost difference sets and their sequences with optimal autocorrelation IEEE Trans. Inf. Theory 47 2934-2943
[2]  
Ding C(2009)Binary sequences with optimal autocorrelation Theor. Comput. Sci. 410 2316-2322
[3]  
Helleseth T(2008)Some nonexistence results on generalized difference sets Appl. Math. Lett. 21 797-802
[4]  
Kumar PV(2017)A note on almost difference sets in nonabelian groups Des. Codes Cryptogr. 72 1-6
[5]  
Martinsen HM(1992)Almost difference sets and reversible divisible difference sets Arch. Math. (Basel) 59 595-602
[6]  
Cai Y(1985)A variations on a scheme of McFarland for noncyclic difference sets J. Comb. Theory A 40 9-21
[7]  
Ding C(2006)A family of skew Hadamard difference sets J. Comb. Theory A 113 1526-1535
[8]  
Cao X(2001)New families of binary sequences with optimal three-level autocorrelation IEEE Trans. Inf. Theory 47 428-433
[9]  
Daying S(2007)Skew Hadamard difference sets from the Ree Tits slice simplectic spreads in J. Comb. Theory A 114 867-887
[10]  
Clayton D(2014)Constructions of almost difference sets from finite fields Des. Codes Cryptogr. 72 581-592