Information Entropy for a Two-Dimensional Rotating Bose–Einstein Condensate

被引:0
作者
R. Kishor Kumar
B. Chakrabarti
A. Gammal
机构
[1] Universidade de São Paulo,Instituto de Física
来源
Journal of Low Temperature Physics | 2019年 / 194卷
关键词
Bose–Einstein condensate; Vortex lattice; Information entropy;
D O I
暂无
中图分类号
学科分类号
摘要
We study the information entropy, order, disorder, and complexity for the two-dimensional (2D) rotating and nonrotating Bose–Einstein condensates. The choice of our system is a complete theoretical laboratory where the complexity is controlled by the two-body contact interaction strength and the rotation frequency (Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}) of the harmonic trap. The 2D nonrotating condensate shows the complexity of the category I where the disorder-order transition is triggered by the interaction strength. In the rotating condensates, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is chosen as the disorder parameter when the interaction strength is fixed. With respect to Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}, the complexity shifts between maximum and minimum confirm the existence of category II complexity in the rotating condensate. Also, we consider the interaction strength as the disorder parameter when Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is unchanged and complexity as a function of interaction strength exhibits category III complexity. The present work also includes the calculation of upper bound and lower bound of entropy for 2D quantum systems.
引用
收藏
页码:14 / 26
页数:12
相关论文
共 138 条
[1]  
Gadre SR(1979)undefined J. Chem. Phys. 71 432-136
[2]  
Sears SB(1981)undefined J. Chem. Phys. 75 4626-320
[3]  
Sears SB(1983)undefined J. Chem. Phys. 79 1933-undefined
[4]  
Gadre SR(2003)undefined J. Chem. Phys. 119 7030-undefined
[5]  
Koga T(2005)undefined J. Chem. Phys. 122 084101-undefined
[6]  
Morita M(2005)undefined J. Chem. Phys. 123 044108-undefined
[7]  
Guevara NL(2005)undefined J. Chem. Phys. 123 074110-undefined
[8]  
Sagar RP(1998)undefined Phys. Lett. A 246 530-undefined
[9]  
Esquivel RO(2001)undefined Phys. Lett. A 280 65-undefined
[10]  
Guevara NL(2002)undefined Phys. Lett. A 299 131-undefined