Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers

被引:0
|
作者
Sergey Neshveyev
Lars Tuset
机构
[1] University of Oslo,Department of Mathematics
[2] Oslo University College,Faculty of Engineering
来源
Communications in Mathematical Physics | 2012年 / 312卷
关键词
Irreducible Representation; Homogeneous Space; Weyl Group; Simple Root; Maximal Torus;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 < q < 1. We study a quantization C(Gq/Kq) of the algebra of continuous functions on G/K. Using results of Soibelman and Dijkhuizen-Stokman we classify the irreducible representations of C(Gq/Kq) and obtain a composition series for C(Gq/Kq). We describe closures of the symplectic leaves of G/K refining the well-known description in the case of flag manifolds in terms of the Bruhat order. We then show that the same rules describe the topology on the spectrum of C(Gq/Kq). Next we show that the family of C*-algebras C(Gq/Kq), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}[G/K]}$$\end{document} . Finally, extending a result of Nagy, we show that C(Gq/Kq) is canonically KK-equivalent to C(G/K).
引用
收藏
页码:223 / 250
页数:27
相关论文
共 50 条
  • [1] Complete involutive algebras of functions on cotangent bundles of homogeneous spaces
    Alexey V. Bolsinov
    Božidar Jovanović
    Mathematische Zeitschrift, 2004, 246 : 213 - 236
  • [2] GELFAND-KIRILLOV DIMENSION OF THE QUANTIZED ALGEBRA OF REGULAR FUNCTIONS ON HOMOGENEOUS SPACES
    Chakraborty, Partha Sarathi
    Saurabh, Bipul
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3289 - 3302
  • [3] Dirac Structures and Poisson Homogeneous Spaces
    Zhang-Ju Liu
    Alan Weinstein
    Ping Xu
    Communications in Mathematical Physics, 1998, 192 : 121 - 144
  • [4] Harmonic Functions on Homogeneous Spaces
    Cho-Ho Chu
    Chi-Wai Leung
    Monatshefte für Mathematik, 1999, 128 : 227 - 235
  • [5] Harmonic functions on homogeneous spaces
    Chu, CH
    Leung, CW
    MONATSHEFTE FUR MATHEMATIK, 1999, 128 (03): : 227 - 235
  • [6] Homological properties of Fourier algebras on homogeneous spaces
    Parthasarathy, K.
    Kumar, N. Shravan
    ARCHIV DER MATHEMATIK, 2011, 96 (04) : 359 - 367
  • [7] Homological properties of Fourier algebras on homogeneous spaces
    K. Parthasarathy
    N. Shravan Kumar
    Archiv der Mathematik, 2011, 96
  • [8] STATIONARY HARMONIC FUNCTIONS ON HOMOGENEOUS SPACES
    Khoroshchak, V. S.
    Kondratyuk, A. A.
    UFA MATHEMATICAL JOURNAL, 2015, 7 (04): : 149 - 153
  • [9] SOME HOMOLOGICAL PROPERTIES OF FOURIER ALGEBRAS ON HOMOGENEOUS SPACES
    Esmailvandi, Reza
    Nemati, Mehdi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (01) : 132 - 140
  • [10] Ideals with bounded approximate identities in the Fourier algebras on homogeneous spaces
    Kumar, N. Shravan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (01): : 1 - 14