Kernels of p′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p'$$\end{document}-Degree Irreducible Characters

被引:0
作者
Alexander Moretó
Noelia Rizo
机构
[1] Universidad de Valencia,Departamento de Matemáticas
[2] Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU,Departamento de Matemáticas
[3] Universidad de Oviedo,Departamento de Matemáticas
关键词
Broline–Garrison theorem; character kernel; character degree; character codegree; -nilpotent group; Primary 20C15;
D O I
10.1007/s00009-022-02057-8
中图分类号
学科分类号
摘要
Let G be a finite group and let p be a prime number. We prove that if χ∈Irrp′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \in {{{\text {Irr}}}}_{p'}(G)$$\end{document} and Kerχ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ker}}\chi $$\end{document} does not have a solvable normal p-complement then there exists ψ∈Irrp′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \in {{{\text {Irr}}}}_{p'}(G)$$\end{document} such that ψ(1)>χ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (1)>\chi (1)$$\end{document} and Kerψ<Kerχ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ker}}\psi <{\text {Ker}}\chi $$\end{document}. This is a p′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p'$$\end{document}-version of a classical theorem of Broline and Garrison. As a consequence, we obtain results on p-parts of character codegrees.
引用
收藏
相关论文
共 14 条
[1]  
Bahramian R(2021)-parts of co-degrees of irreducible characters C. R. Math. Acad. Sci. Paris 359 79-83
[2]  
Ahanjideh N(1981)Connections between the Math. Notes 29 85-90
[3]  
Bryukhanova E(1998)-length and the derived length of a Sylow J. Algebra 210 361-363
[4]  
Corrádi K(2016)-subgroups of a solvable group J. Group Theory 19 561-567
[5]  
Hethélyi L(2017)On a theorem of Broline Rev. Mat. Iberoam. 33 117-138
[6]  
Du N(2004)Codegrees and nilpotence class of Adv. Math. 184 18-36
[7]  
Lewis M(2010)-groups Adv. Math. 224 1121-1142
[8]  
Hung NN(2018)Characters of Adv. Math. 328 356-366
[9]  
Moretó A(undefined)-degree and Thompson’s character degree theorem undefined undefined undefined-undefined
[10]  
Wolf T(undefined)Orbit sizes, character degrees and Sylow subgroups undefined undefined undefined-undefined