Solutions for a class of nonlinear Volterra integral and integro-differential equation using cyclic (φ,ψ,θ)-contraction

被引:0
作者
Hemant Kumar Nashine
RP Pathak
Piyusha S Somvanshi
Slavisa Pantelic
Poom Kumam
机构
[1] Vidhansabha-Chandrakhuri Marg,Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar
[2] National Institue of Technology,Department of Mathematics
[3] University of Belgrade,Faculty of Mechanical Engineering
[4] King Mongkut’s University of Technology Thonburi (KMUTT),Department of Mathematics, Faculty of Science
来源
Advances in Difference Equations | / 2013卷
关键词
fixed point; cyclic contraction; metric space; integral equation; differential equation;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the existence and uniqueness of solutions for a class of nonlinear Volterra integral and integro-differential equations using fixed-point theorems for a new variant of cyclic (φ,ψ,θ)-contractive mappings. Nontrivial examples are given to support the usability of our results.
引用
收藏
相关论文
共 29 条
[1]  
Banach S(1922)Sur les opérations dans les ensembles abstraits et leur application aux equations integrales Fundam. Math 3 133-181
[2]  
Nashine HK(2012)New fixed point theorems for mappings satisfying generalized weakly contractive condition with weaker control functions Ann. Pol. Math 104 109-119
[3]  
Pachpatte BG(2008)On Volterra and Fredholm type integrodifferential equations Tamsui Oxf. J. Math. Sci 24 289-310
[4]  
Pachpatte BG(2010)On a nonlinear Volterra integral equation in two variables Sarajevo J. Math 6 59-73
[5]  
Kirk WA(2003)Fixed points for mappings satisfying cyclical contractive conditions Fixed Point Theory 4 79-89
[6]  
Srinivasan PS(2010)Fixed point theory for cyclic Nonlinear Anal 72 1181-1187
[7]  
Veeramani P(2011)-contractions Appl. Math. Lett 24 822-825
[8]  
Pacurar M(2012)Fixed point theory for cyclic weak Nonlinear Anal 75 6160-6169
[9]  
Rus IA(2012)-contraction Abstr. Appl. Anal 2012 1-15
[10]  
Karapınar E(2010)Cyclic generalized Gen. Math 18 213-226