New Integrable Cases and Families of Portraits in the Plane and Spatial Dynamics of a Rigid Body Interacting with a Medium

被引:4
作者
M. V. Shamolin
机构
关键词
Spatial Dynamics; Integrable Case;
D O I
10.1023/A:1021865626829
中图分类号
学科分类号
摘要
引用
收藏
页码:919 / 975
页数:56
相关论文
共 91 条
[1]  
Andronov A. A.(1938)On the theory of changes in the qualitative structure of the partition of a lane into trajectories Dokl. Akad. Nauk SSSR 21 9-372
[2]  
Leontovich E. A.(1959)On the bifurcation of limit cycles from a separatrix loo and from the separatrix of the equilibrium state of the saddle-node ty e ”Ma. Sb. 48 3-2134
[3]  
Andronov A. A.(1965)Dynamical systems of the rst degree of structural instability on the lane Ma. Sb 68 328-250
[4]  
Leontovich E. A.(1970)Suffcient conditions for the first-degree structural insta-bility of a dynamical system on the lane Differents. Urav 6 2121-169
[5]  
Andronov A. A.(1937)Rough systems Dokl. Akad. Nauk SSSR 14 247-226
[6]  
Leontovich E. A.(1986)Topological classi cation of. ows on closed two-dimensional manifolds Usp. Ma. Nauk 41 149-989
[7]  
Andronov A. A.(1969)The Euler equations of dynamics of rigid bodies in an ideal. uid are Hamiltonian Usp. Ma. Nauk 24 225-42
[8]  
Leontovich E. A.(1952)On the number of limit cycles that bifurcate from the equilibrium state of the focus or center type under a change of coeffcients ”Mat. Sb. 30 1-15
[9]  
Andronov A. A.(1973)Certain methods for the qualitative study of dynamical systems involving the rotation of a field Prikl. Mat. Mekh 37 984-881
[10]  
Pontryagin L. S.(1984)On the dynamics of atmospheric. flight of axially symmetric rotating bodies Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela 2 35-94