On-printed circuit board emulator with controllability of pinched hysteresis loop for nanoscale TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{TiO}_2$$\end{document} thin-film memristor device

被引:0
作者
Van Ha Nguyen
Keun Yong Sohn
Hanjung Song
机构
[1] Inje University,Department of Nanoscience and Engineering, Center for Nano Manufacturing
关键词
Memristor emulator; Thin-film ; memristor; Modeling; Nanoscale device; Memristive behavior;
D O I
10.1007/s10825-016-0862-x
中图分类号
学科分类号
摘要
Since real memristor devices are still not commercially available to most researchers, modeling a memristor is an effective method to explore its properties. In this paper, a flux-controlled memristor emulator circuit that can correctly mimic the memristive behavior of a real nanoscale TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{TiO}_2$$\end{document} thin-film memristor device is presented. The mathematical equations for the proposed emulator are explicitly derived, and the design parameters for the circuit in which the emulator works as a passive memristor with positive memductance are discussed. In addition, the proposed emulator can produce various v–i hysteretic behaviors by controlling the nonlinear polynomial cubic function between the flux and charge inside. The results from numerical simulations in PSpice and MATLAB, as well as the measured results from an implemented emulator circuit on a printed circuit board using off-the-shelf electronics components, demonstrate that a controllable emulator can actually be constructed. This study serves as a foundation for understanding and designing different emulators for nanoscale TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{TiO}_2$$\end{document} thin-film memristors at the laboratory level.
引用
收藏
页码:993 / 1002
页数:9
相关论文
共 99 条
  • [1] Strukov DB(2008)The missing memristor found Nature 453 80-83
  • [2] Snider GS(2011)Memristor MOS content addressable memory (MCAM): hybrid architecture for future high performance IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19 1407-1417
  • [3] Stewart DR(2009)Writing to and reading from a nano-scale crossbar memory based on memristors Nanotechnology 20 425204-1864
  • [4] Williams RS(2010)Practical approach to programmable analog circuits with memristors IEEE Trans. Circuits Syst. I Regul. Pap. 57 1857-274
  • [5] Shraghian K(2011)Memristor applications for programmable analog ICs IEEE Trans. Nanotechnol. 10 266-3645
  • [6] Cho K(2009)Memristor CMOS hybrid integrated circuits for recongurable logic Nano Lett. 9 3640-1221
  • [7] Kavehel O(2011)Memristor-based reactance-less oscillator Electron. Lett. 47 1220-2708
  • [8] Kang S(2013)Generalized analysis of symmetric and asymmetric Memristive two-gate relaxation oscillators IEEE Trans. Circuits Syst. I Regul. Pap. 60 2701-1102
  • [9] Abbott D(2014)Memristor-based voltage controlled relaxation oscillators Int. J. Circuit Theor. Appl. 42 1092-1301
  • [10] Kang S(2013)A gallery of chaotic oscillators based on HP memristor Int. J. Bifurc. Chaos 23 1330015-214