A connectedness criterion for ℓ-adic galois representations-adic galois representations

被引:0
作者
Michael Larsen
Richard Pink
机构
[1] University of Pennsylvania,Department of Mathematics
[2] Universität Mannheim,Fakultät für Mathematik und Informatik
来源
Israel Journal of Mathematics | 1997年 / 97卷
关键词
Characteristic Polynomial; Abelian Variety; Maximal Torus; Galois Representation; Finite Extension;
D O I
暂无
中图分类号
学科分类号
摘要
To every compatible system of Galois representations of a global fieldK, there is associated a natural invariantKconn, the smallest extension ofK over which the associated algebraic monodromy groups become connected. We present a purely field-theoretic construction ofKconn for all Galois representations arising from cohomology.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 8 条
[1]  
Chi W.(1992)l-adic and λ-adic representations associated to abelian varieties defined over number fields American Journal of Mathematics 114 315-353
[2]  
Deligne P.(1980)La Conjecture de Weil, II Publications Mathématiques de l’Institut des Hautes Études Scientifiques 52 138-252
[3]  
Illusie L.(1994)Crystalline cohomology Proceedings of the Summer Research Conference on Motives, Seattle 1991, Proceedings of Symposia in Pure Mathematics 55 43-70
[4]  
Katz N. M.(1974)Some consequences of the Riemann hypothesis for varieties over finite fields Inventiones mathematicae 23 73-77
[5]  
Messing W.(1992)On l-independence of algebraic monodromy groups in compatible systems of representations Inventiones mathematicae 107 603-636
[6]  
Larsen M.(1981)Quelques applications du théorème de densité de Cebotarev Publications Mathématiques de l’Institut des Hautes Études Scientifiques 54 123-201
[7]  
Pink R.(undefined)undefined undefined undefined undefined-undefined
[8]  
Serre J.-P.(undefined)undefined undefined undefined undefined-undefined