A vertebrate case study of the quality of assemblies derived from next-generation sequences

被引:0
|
作者
Liang Ye
LaDeana W Hillier
Patrick Minx
Nay Thane
Devin P Locke
John C Martin
Lei Chen
Makedonka Mitreva
Jason R Miller
Kevin V Haub
David J Dooling
Elaine R Mardis
Richard K Wilson
George M Weinstock
Wesley C Warren
机构
[1] The Genome Center,
[2] Washington University School of Medicine,undefined
[3] The J Craig Venter Institute,undefined
来源
关键词
Segmental Duplication; Chicken Genome; Test Assembly; Single Base Substitution; Assembly Quality;
D O I
暂无
中图分类号
学科分类号
摘要
The unparalleled efficiency of next-generation sequencing (NGS) has prompted widespread adoption, but significant problems remain in the use of NGS data for whole genome assembly. We explore the advantages and disadvantages of chicken genome assemblies generated using a variety of sequencing and assembly methodologies. NGS assemblies are equivalent in some ways to a Sanger-based assembly yet deficient in others. Nonetheless, these assemblies are sufficient for the identification of the majority of genes and can reveal novel sequences when compared to existing assembly references.
引用
收藏
相关论文
共 50 条
  • [1] A vertebrate case study of the quality of assemblies derived from next-generation sequences
    Ye, Liang
    Hillier, LaDeana W.
    Minx, Patrick
    Thane, Nay
    Locke, Devin P.
    Martin, John C.
    Chen, Lei
    Mitreva, Makedonka
    Miller, Jason R.
    Haub, Kevin V.
    Dooling, David J.
    Mardis, Elaine R.
    Wilson, Richard K.
    Weinstock, George M.
    Warren, Wesley C.
    GENOME BIOLOGY, 2011, 12 (03):
  • [2] Next-Generation Sequencing: Next-Generation Quality in Pediatrics
    Wortmann, Saskia B.
    Spenger, Johannes
    Preisel, Martin
    Koch, Johannes
    Rauscher, Christian
    Bader, Ingrid
    Mayr, Johannes A.
    Sperl, Wolfgang
    PADIATRIE UND PADOLOGIE, 2018, 53 (06): : 278 - 283
  • [3] Next-generation sequencing of vertebrate experimental organisms
    Daniel J. Turner
    Thomas M. Keane
    Ian Sudbery
    David J. Adams
    Mammalian Genome, 2009, 20 : 327 - 338
  • [4] Next-generation sequencing of vertebrate experimental organisms
    Turner, Daniel J.
    Keane, Thomas M.
    Sudbery, Ian
    Adams, David J.
    MAMMALIAN GENOME, 2009, 20 (06) : 327 - 338
  • [5] Next-generation sequencing and large genome assemblies
    Henson, Joseph
    Tischler, German
    Ning, Zemin
    PHARMACOGENOMICS, 2012, 13 (08) : 901 - 915
  • [6] Graph accordance of next-generation sequence assemblies
    Yao, Guohui
    Ye, Liang
    Gao, Hongyu
    Minx, Patrick
    Warren, Wesley C.
    Weinstock, George M.
    BIOINFORMATICS, 2012, 28 (01) : 13 - 16
  • [7] Quality control for next-generation liquefaction case histories
    Zimmaro, P.
    Brandenberg, S. J.
    Bozorgnia, Y.
    Stewart, J. P.
    Kwak, D. Y.
    Cetin, K. O.
    Can, G.
    Ilgac, M.
    Franke, K. W.
    Moss, R. E. S.
    Kramer, S. L.
    Stamatakos, J.
    Juckett, M.
    Weaver, T.
    EARTHQUAKE GEOTECHNICAL ENGINEERING FOR PROTECTION AND DEVELOPMENT OF ENVIRONMENT AND CONSTRUCTIONS, 2019, 4 : 5905 - 5912
  • [8] Unforeseen Consequences of Excluding Missing Data from Next-Generation Sequences: Simulation Study of RAD Sequences
    Huang, Huateng
    Knowles, L. Lacey
    SYSTEMATIC BIOLOGY, 2016, 65 (03) : 357 - 365
  • [9] SEED: efficient clustering of next-generation sequences
    Bao, Ergude
    Jiang, Tao
    Kaloshian, Isgouhi
    Girke, Thomas
    BIOINFORMATICS, 2011, 27 (18) : 2502 - 2509
  • [10] Quality Guidelines for Next-Generation Sequencing
    Baudhuin, Linnea M.
    CLINICAL CHEMISTRY, 2013, 59 (05) : 858 - 859