The normal subgroup structure of the extended Hecke groups
被引:0
作者:
Özden Koruoğlu
论文数: 0引用数: 0
h-index: 0
机构:Balıkesir Üniversitesi Necatibey Eğitim Fakültesi,
Özden Koruoğlu
Recep Sahin
论文数: 0引用数: 0
h-index: 0
机构:Balıkesir Üniversitesi Necatibey Eğitim Fakültesi,
Recep Sahin
Sebahattin İkikardes
论文数: 0引用数: 0
h-index: 0
机构:Balıkesir Üniversitesi Necatibey Eğitim Fakültesi,
Sebahattin İkikardes
机构:
[1] Balıkesir Üniversitesi Necatibey Eğitim Fakültesi,
[2] Ilköğretim Bölümü,undefined
[3] Matematik Eğitimi,undefined
[4] Balıkesir Üniversitesi Fen-Edebiyat Fakültesi,undefined
[5] Matematik Bölümü,undefined
来源:
Bulletin of the Brazilian Mathematical Society, New Series
|
2007年
/
38卷
关键词:
extended Hecke group;
fundamental region;
commutator subgroup;
even subgroup;
power subgroup;
11F06;
20H05;
20H10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the extended Hecke groups \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\ifmmode\expandafter\bar\else\expandafter\=\fi{H}{\left( \lambda \right)}
$$\end{document} generated by T(z) = −1/z, S(z) = −1/(z + λ) and R(z) = 1/z with λ ≥ 2. In this paper, firstly, we study the fundamental region of the extended Hecke groups \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\ifmmode\expandafter\bar\else\expandafter\=\fi{H}{\left( \lambda \right)}
$$\end{document}. Then, we determine the abstract group structure of the commutator subgroups \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
{\ifmmode\expandafter\bar\else\expandafter\=\fi{H}}\ifmmode{'}\else$'$\fi{\left( \lambda \right)}
$$\end{document}, the even subgroup \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\ifmmode\expandafter\bar\else\expandafter\=\fi{H}_{e} {\left( \lambda \right)}
$$\end{document}, and the power subgroups \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\ifmmode\expandafter\bar\else\expandafter\=\fi{H}^{m} {\left( \lambda \right)}
$$\end{document} of the extended Hecke groups \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\ifmmode\expandafter\bar\else\expandafter\=\fi{H}{\left( \lambda \right)}
$$\end{document}. Also, finally, we give some relations between them.