The normal subgroup structure of the extended Hecke groups

被引:0
作者
Özden Koruoğlu
Recep Sahin
Sebahattin İkikardes
机构
[1] Balıkesir Üniversitesi Necatibey Eğitim Fakültesi,
[2] Ilköğretim Bölümü,undefined
[3] Matematik Eğitimi,undefined
[4] Balıkesir Üniversitesi Fen-Edebiyat Fakültesi,undefined
[5] Matematik Bölümü,undefined
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2007年 / 38卷
关键词
extended Hecke group; fundamental region; commutator subgroup; even subgroup; power subgroup; 11F06; 20H05; 20H10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the extended Hecke groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ifmmode\expandafter\bar\else\expandafter\=\fi{H}{\left( \lambda \right)} $$\end{document} generated by T(z) = −1/z, S(z) = −1/(z + λ) and R(z) = 1/z with λ ≥ 2. In this paper, firstly, we study the fundamental region of the extended Hecke groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ifmmode\expandafter\bar\else\expandafter\=\fi{H}{\left( \lambda \right)} $$\end{document}. Then, we determine the abstract group structure of the commutator subgroups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\ifmmode\expandafter\bar\else\expandafter\=\fi{H}}\ifmmode{'}\else$'$\fi{\left( \lambda \right)} $$\end{document}, the even subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ifmmode\expandafter\bar\else\expandafter\=\fi{H}_{e} {\left( \lambda \right)} $$\end{document}, and the power subgroups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ifmmode\expandafter\bar\else\expandafter\=\fi{H}^{m} {\left( \lambda \right)} $$\end{document} of the extended Hecke groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ifmmode\expandafter\bar\else\expandafter\=\fi{H}{\left( \lambda \right)} $$\end{document}. Also, finally, we give some relations between them.
引用
收藏
页码:51 / 65
页数:14
相关论文
empty
未找到相关数据