Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons

被引:0
|
作者
Jürg Fröhlich
Sandro Graffi
Simon Schwarz
机构
[1] ETH Zürich,Theoretische Physik
[2] Università di Bologna,Dipartimento di Matematica
来源
Communications in Mathematical Physics | 2007年 / 271卷
关键词
Classical Limit; Wigner Function; Vlasov Equation; Hartree Equation; Husimi Function;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new proof of the convergence of the N −particle Schrödinger dynamics for bosons towards the dynamics generated by the Hartree equation in the mean-field limit. For a restricted class of two-body interactions, we obtain convergence estimates uniform in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbar}$$\end{document} , up to an exponentially small remainder. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbar = 0}$$\end{document} , the classical dynamics in the mean-field limit is given by the Vlasov equation.
引用
收藏
页码:681 / 697
页数:16
相关论文
共 50 条
  • [1] Mean-field- and classical limit of many-body Schrodinger dynamics for bosons
    Froehlich, Jierg
    Graffi, Sandro
    Schwarz, Simon
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (03) : 681 - 697
  • [2] Quantum Many-Body Fluctuations Around Nonlinear Schrödinger Dynamics
    Chiara Boccato
    Serena Cenatiempo
    Benjamin Schlein
    Annales Henri Poincaré, 2017, 18 : 113 - 191
  • [3] A new method of solving the many-body Schrödinger equation
    V. M. Tapilin
    Journal of Structural Chemistry, 2017, 58 : 1 - 8
  • [4] Derivation of the Landau–Pekar Equations in a Many-Body Mean-Field Limit
    Nikolai Leopold
    David Mitrouskas
    Robert Seiringer
    Archive for Rational Mechanics and Analysis, 2021, 240 : 383 - 417
  • [5] Layered chaos in mean-field and quantum many-body dynamics
    Valdez, Marc Andrew
    Shchedrin, Gavriil
    Sols, Fernando
    Carr, Lincoln D.
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [6] Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems
    László Erdős
    Benjamin Schlein
    Horng-Tzer Yau
    Inventiones mathematicae, 2007, 167 : 515 - 614
  • [7] Derivation of the Landau-Pekar Equations in a Many-Body Mean-Field Limit
    Leopold, Nikolai
    Mitrouskas, David
    Seiringer, Robert
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (01) : 383 - 417
  • [8] ON THE RATE OF CONVERGENCE FOR THE MEAN FIELD APPROXIMATION OF BOSONIC MANY-BODY QUANTUM DYNAMICS
    Ammari, Zied
    Falconi, Marco
    Pawilowski, Boris
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (05) : 1417 - 1442
  • [9] Unique Continuation for Many-Body Schrödinger Operators and the Hohenberg-Kohn Theorem
    Louis Garrigue
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [10] Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties
    Klaiman, S.
    Streltsov, A. I.
    Alon, E.
    26TH ANNUAL INTERNATIONAL LASER PHYSICS WORKSHOP (LPHYS'17), 2018, 999