Standard shearlet group in arbitrary space dimensions and projections in its L1-algebra

被引:0
|
作者
Masoumeh Zare
Rajab Ali Kamyabi-Gol
机构
[1] Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebraic Structures (CEAAS),Department of Pure Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2019年 / 50卷
关键词
-projection; shearlet group; square-integrable representation; admissible function;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to definition standard shearlet group S=R+×Rn−1×Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S} = {\mathbb{R}^ + } \times {\mathbb{R}^{n - 1}} \times {\mathbb{R}^n}$$\end{document}, in arbitrary space dimensions and concerned with the projections which are, self adjoint idempotents in the group algebra L1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^1}(\mathbb{S})$$\end{document}. Actually we determine minimal projections, associated with an open free orbit, in details.
引用
收藏
页码:1115 / 1132
页数:17
相关论文
共 50 条
  • [1] STANDARD SHEARLET GROUP IN ARBITRARY SPACE DIMENSIONS AND PROJECTIONS IN ITS L1-ALGEBRA
    Zare, Masoumeh
    Kamyabi-Gol, Rajab Ali
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (04): : 1115 - 1132
  • [2] Unitary dual of the standard shearlet group, in arbitrary space dimensions
    Zare, Masoumeh
    Ali Kamyabi-Gol, Rajab
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2018, 80 (02): : 51 - 60
  • [3] UNITARY DUAL OF THE STANDARD SHEARLET GROUP, IN ARBITRARY SPACE DIMENSIONS
    Zare, Masoumeh
    Kamyabi-Gol, Rajab Ali
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (02): : 51 - 60
  • [4] GENERALIZATION OF L1-ALGEBRA OF A COMMUTATIVE SEMI-GROUP
    AKINYELE, O
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1970, 49 (1-2): : 17 - &
  • [5] The Continuous Shearlet Transform in Arbitrary Space Dimensions
    Dahlke, Stephan
    Steidl, Gabriele
    Teschke, Gerd
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (03) : 340 - 364
  • [6] The Continuous Shearlet Transform in Arbitrary Space Dimensions
    Stephan Dahlke
    Gabriele Steidl
    Gerd Teschke
    Journal of Fourier Analysis and Applications, 2010, 16 : 340 - 364
  • [8] AN L1-ALGEBRA FOR ALGEBRAICALLY IRREDUCIBLE SEMIGROUPS
    BERGMAN, JG
    ROTHMAN, NJ
    STUDIA MATHEMATICA, 1969, 33 (03) : 257 - &
  • [9] Inversion Formula for Shearlet Transform in Arbitrary Space Dimensions
    Jiang, Shenming
    Jiang, Zetao
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (11) : 1438 - 1463
  • [10] REPRESENTATIONS OF L1-ALGEBRA OF AN INVERSE SEMIGROUP
    BARNES, BA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 218 (APR) : 361 - 396