On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator

被引:0
作者
J. I. Abdullaev
J. K. Boymurodov
A. M. Khalkhuzhaev
机构
[1] Samarkand State University named after Sharof Rashidov,
[2] Navoi State Pedagogical Institute,undefined
[3] V. I. Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan,undefined
来源
Mathematical Notes | 2023年 / 114卷
关键词
Schrödinger operator; lattice; Hamiltonian; zero-range potential; boson; eigenvalue; total quasimomentum; invariant subspace; Faddeev operator;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:645 / 658
页数:13
相关论文
共 31 条
[1]  
Mattis D. C.(1986)The few-body problem on a lattice Rev. Modern Phys. 58 361-379
[2]  
Lakaev S. N.(2003)Essential and Discrete Spectra of the Three-Particle Schrödinger Operator on a Lattice Theoret. and Math. Phys. 135 849-871
[3]  
Muminov M. I.(1970)Energy levels arising from resonant two-body forces in a three-body system Phys. Lett. B 33 563-564
[4]  
Efimov V.(1971)a class of exactly solvable three-body quantum mechanical problems and the universal low energy behavior Phys. Lett. A 83 105-109
[5]  
Albeverio S.(1971)Efimov’s effect. A New Pathology of Three-Particle Systems Phys. Lett. B 35 25-27
[6]  
Hoegh-Krohn R.(1974)On the theory of the discrete spectrum of the three-particle Schrödinger operator Math. USSR-Sb. 23 535-559
[7]  
Wu T. T.(1989)Number of bound states of three-body systems and Efimov’s effect Ann. Physics 123 274-295
[8]  
Amado R. D.(1993)The Efimov effect Discrete Spectrum Asymptotics Comm. Math. Phys. 156 101-126
[9]  
Noble J. V.(2016)Bound states of the Schrödinger operator of a system of three bosons on a lattice Theoret. and Math. Phys. 188 994-1005
[10]  
Yafaev D. R.(2002)Spectrum of the three-particle Schrödinger difference operator on a lattice Math. Notes 71 624-633