Characterization of the life cycle greenhouse gas emissions from wind electricity generation systems

被引:25
|
作者
Kadiyala A. [1 ]
Kommalapati R. [1 ,2 ]
Huque Z. [1 ,3 ]
机构
[1] Center for Energy and Environmental Sustainability, Prairie View A&M University, Prairie View, 77446, TX
[2] Department of Civil and Environmental Engineering, Prairie View A&M University, Prairie View, 77446, TX
[3] Department of Mechanical Engineering, Prairie View A&M University, Prairie View, 77446, TX
基金
美国国家科学基金会;
关键词
Electricity generation; Greenhouse gas emissions; Horizontal axis wind turbine; Life cycle assessment; Offshore; Onshore; Vertical axis wind turbine; Wind energy;
D O I
10.1007/s40095-016-0221-5
中图分类号
学科分类号
摘要
This study characterized and evaluated the life cycle greenhouse gas (GHG) emissions from different wind electricity generation systems by (a) performing a comprehensive review of the wind electricity generation system life cycle assessment (LCA) studies and (b) statistically evaluating the life cycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh). A categorization index (with unique category codes, formatted as ‘axis of rotation-installed location-power generation capacity’) was adopted for use in this study to characterize the reviewed wind electricity generation systems. The unique category codes were labeled by integrating the names from the three wind power sub-classifications, i.e., the axis of rotation of the wind turbine [horizontal axis wind turbine (HAWT), vertical axis wind turbine (VAWT)], the location of the installation [onshore (ON), offshore (OFF)], and the electricity production capacity [small (S), intermediate (I), large (L)]. The characterized wind electricity generation systems were statistically evaluated to assess the reduction in life cycle GHG emissions. A total of five unique categorization codes (HAWT-ON-S, HAWT-ON-I, HAWT-ON-L, HAWT-OFF-L, VAWT-ON-S) were designated to the 29 wind electricity generation LCA studies (representing 74 wind system cases) using the proposed categorization index. The mean life cycle GHG emissions resulting from the use of HAWT-ON-S (N = 3), HAWT-ON-I (N = 4), HAWT-ON-L (N = 58), HAWT-OFF-L (N = 8), and VAWT-ON-S (N = 1) wind electricity generation systems are 38.67, 11.75, 15.98, 12.9, and 46.4 gCO2e/kWh, respectively. The HAWT-ON-I wind electricity generation systems produced the minimum life cycle GHGs than other wind electricity generation systems. © 2016, The Author(s).
引用
收藏
页码:55 / 64
页数:9
相关论文
共 50 条
  • [31] Prospective life-cycle assessment of greenhouse gas emissions of electricity-based mobility options
    Rudisuli, Martin
    Bach, Christian
    Bauer, Christian
    Beloin-Saint-Pierre, Didier
    Elber, Urs
    Georges, Gil
    Limpach, Robert
    Pareschi, Giacomo
    Kannan, Ramachandran
    Teske, Sinan L.
    APPLIED ENERGY, 2022, 306
  • [32] Input-output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States
    Kumar, Indraneel
    Tyner, Wallace E.
    Sinha, Kumares C.
    ENERGY POLICY, 2016, 89 : 294 - 301
  • [33] Life cycle greenhouse gas emissions and energy footprints of utility-scale solar energy systems
    Mehedi, Tanveer Hassan
    Gemechu, Eskinder
    Kumar, Amit
    APPLIED ENERGY, 2022, 314
  • [34] Electricity Generation in Saudi Arabia: Tracing Opportunities and Challenges to Reducing Greenhouse Gas Emissions
    Rahman, Syed Masiur
    Al-Ismail, Fahad Saleh Mohammed
    Haque, Md Ershadul
    Shafiullah, Md
    Islam, Md Rashidul
    Chowdhury, Md Tareq
    Alam, Md Shafiul
    Razzak, Shaikh Abdur
    Ali, Amjad
    Khan, Zaid Ahsan
    IEEE ACCESS, 2021, 9 : 116163 - 116182
  • [35] Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production
    de Jong, Sierk
    Antonissen, Kay
    Hoefnagels, Ric
    Lonza, Laura
    Wang, Michael
    Faaij, Andre
    Junginger, Martin
    BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
  • [36] Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production
    Sierk de Jong
    Kay Antonissen
    Ric Hoefnagels
    Laura Lonza
    Michael Wang
    André Faaij
    Martin Junginger
    Biotechnology for Biofuels, 10
  • [37] Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production
    Johnson, David R.
    Willis, Henry H.
    Curtright, Aimee E.
    Samaras, Constantine
    Skone, Timothy
    BIOMASS & BIOENERGY, 2011, 35 (07) : 2619 - 2626
  • [38] Developing an integrated framework for assessing the life cycle greenhouse gas emissions and life cycle cost of buildings
    Schmidt, Monique
    Crawford, Robert H.
    CREATIVE CONSTRUCTION CONFERENCE 2017, CCC 2017, 2017, 196 : 988 - 995
  • [39] Uncertainties in life cycle greenhouse gas emissions from US beef cattle
    Dudley, Quentin M.
    Liska, Adam J.
    Watson, Andrea K.
    Erickson, Galen E.
    JOURNAL OF CLEANER PRODUCTION, 2014, 75 : 31 - 39
  • [40] Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China
    Chang, Yuan
    Huang, Runze
    Ries, Robert J.
    Masanet, Eric
    ENERGY, 2015, 86 : 335 - 343