Rigorous results of phase transition theory in lattice boson models

被引:0
作者
D. P. Sankovich
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,
来源
Proceedings of the Steklov Institute of Mathematics | 2015年 / 290卷
关键词
Phase Transition; STEKLOV Institute; Hubbard Model; Optical Lattice; Quantum Phase Transition;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum systems of particles obeying Bose statistics and moving in d-dimensional lattices are studied. The original Bose–Hubbard Hamiltonian is considered, together with model systems related to this Hamiltonian: the Bose–Hubbard model with exchange interaction of infinite radius and the Bose–Hubbard model with infinite interaction potential. Rigorous results concerning the proof of the existence of Bose condensation and a phase transition to the Mott insulator state in these systems are presented.
引用
收藏
页码:318 / 325
页数:7
相关论文
共 56 条
  • [1] D J.(1998)Cold bosonic atoms in optical lattices Phys. Rev. Lett. 81 3108-3111
  • [2] C B.(2002)Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms Nature 415 39-44
  • [3] J. I C.(2005)The cold atom Hubbard toolbox Ann. Phys. 315 52-79
  • [4] C. W G.(1963)Electron correlations in narrow energy bands Proc. R. Soc. London A 276 238-257
  • [5] P Z.(1956)A lattice model of liquid helium. I Prog. Theor. Phys. 16 569-582
  • [6] M G.(1963)Quantum cell model for bosons Phys. Rev. 129 959-967
  • [7] O M.(1989)Boson localization and the superfluid–insulator transition Phys. Rev. B 40 546-570
  • [8] T E.(2003)Mott–Hubbard transition of cold atoms in optical lattices J. Optics B 5 S9-S16
  • [9] T. W H.(2003)Exact solution of the infinite-range-hopping Bose–Hubbard model J. Stat. Phys. 113 177-196
  • [10] I B.(1968)On the asymptotic exactness of the Bogoliubov approximation for many boson systems Commun. Math. Phys. 8 26-51