Hermite–Hadamard type inequalities for fractional integrals via Green’s function

被引:0
作者
Muhammad Adil Khan
Arshad Iqbal
Muhammad Suleman
Yu-Ming Chu
机构
[1] Hunan City University,College of Science
[2] University of Peshawar,Department of Mathematics
[3] Huzhou University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Hermite–Hadamard inequality; convex function; Green’s function; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we establish the left Riemann–Liouville fractional Hermite–Hadamard type inequalities and the generalized Hermite–Hadamard type inequalities by using Green’s function and Jensen’s inequality, and present several new Hermite–Hadamard type inequalities for a class of convex as well as monotone functions.
引用
收藏
相关论文
共 89 条
[1]  
Pearce C.E.M.(1995)An integral inequality for convex functions, with applications to teletraffic congestion problems Math. Oper. Res. 20 526-528
[2]  
Pečarić J.E.(2000)The Euler formulae and convex functions Math. Inequal. Appl. 3 211-221
[3]  
Dedić L.(2018)Landen inequalities for a class of hypergeometric functions with applications Math. Inequal. Appl. 21 521-537
[4]  
Pearce C.E.M.(2018)Infinite series formula for Hübner upper bounds function with applications to Hersch–Pfluger distortion function Math. Inequal. Appl. 21 629-648
[5]  
Pečarić J.E.(2019)Hermite–Hadamard type fractional integral inequalities for J. Comput. Anal. Appl. 26 1487-1503
[6]  
Wang M.-K.(1994)-preinvex functions J. Math. Anal. Appl. 183 523-527
[7]  
Chu Y.-M.(2011)An inequality for convex functions Comput. Math. Appl. 62 401-418
[8]  
Wang M.-K.(2014)New Hermite–Hadamard-type inequalities for convex function II Commun. Math. 22 107-132
[9]  
Qiu S.-L.(2015)Bounds for convex functions of Čebyšev functional via Sonin’s identity with applications Results Math. 67 217-234
[10]  
Chu Y.-M.(2015)New Steffensen type inequalities involving convex functions J. Math. Inequal. 9 1349-1364