Vector-Valued Local Approximation Spaces

被引:0
作者
Tuomas Hytönen
Jori Merikoski
机构
[1] University of Helsinki,Department of Mathematics and Statistics
[2] University of Turku,Department of Mathematics and Statistics
来源
Journal of Fourier Analysis and Applications | 2019年 / 25卷
关键词
Local approximation space; Besov space; Embedding; Uniformly convex space; Martingale cotype; Littlewood–Paley theory; Primary 46E35; Secondary 41A10; 42B25; 46B20; 60G46;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for every Banach space Y, the Besov spaces of functions from the n-dimensional Euclidean space to Y agree with suitable local approximation spaces with equivalent norms. In addition, we prove that the Sobolev spaces of type q are continuously embedded in the Besov spaces of the same type if and only if Y has martingale cotype q. We interpret this as an extension of earlier results of Xu (J Reine Angew Math 504:195–226, 1998), and Martínez et al. (Adv Math 203(2):430–475, 2006). These two results combined give the characterization that Y admits an equivalent norm with modulus of convexity of power type q if and only if weakly differentiable functions have good local approximations with polynomials.
引用
收藏
页码:299 / 320
页数:21
相关论文
共 25 条
  • [1] Amann H(1997)Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications Math. Nachr. 186 5-56
  • [2] Bates S(1999)Affine approximation of Lipschitz functions and nonlinear quotients Geom. Funct. Anal. 9 1092-1127
  • [3] Johnson WB(2016)Quantitative affine approximation for UMD targets Discrete Anal. 1 37-252
  • [4] Lindenstrauss J(2008)Embedding vector-valued Besov spaces into spaces of Math. Nachr. 281 238-388
  • [5] Preiss D(2005)-radonifying operators J. Funct. Anal. 227 372-475
  • [6] Schechtman G(2006)Refined limiting imbeddings for Sobolev spaces of vector-valued functions Adv. Math. 203 430-136
  • [7] Hytönen T(2015)Vector-valued Littlewood–Paley–Stein theory for semigroups J. Fourier Anal. Appl. 21 95-350
  • [8] Li S(1975)Pointwise multiplication on vector-valued function spaces with power weights Israel J. Math. 20 326-1106
  • [9] Naor A(2012)Martingales with values in uniformly convex spaces Math. Nachr. 285 1082-226
  • [10] Kalton N(1998)Traces of vector-valued Sobolev spaces J. Reine Angew. Math. 504 195-undefined