Robust Affine Subspace Clustering via Smoothed ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-Norm

被引:1
作者
Wenhua Dong
Xiao-jun Wu
机构
[1] Jiangnan University,
关键词
Affine subspace clustering; Smoothed ; -norm; Gradient method and Proximal projection;
D O I
10.1007/s11063-018-9962-x
中图分类号
学科分类号
摘要
In the past few years, sparse representation based method has been used in many fields with breathtaking speed due to its superior sparse recovery performance. Sparse subspace clustering (SSC), as one of its application hot-spots, has attracted considerable attention. Traditional sparse subspace clustering methods employ the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document}-norm to induce sparse representation of data points. Typically, the use of ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document}-regularization instead of the ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document} one can make the objective function convex while it also causes large errors on large coefficients in some cases. In this work, we propose using the non-convex smoothed ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document}-norm to replace the ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{0}$$\end{document} one for affine subspace clustering. This leads to a non-convex minimization problem. We then propose an effective method to solve the problem which minimizes the objective function by using the gradient method and proximal projection. In addition, the proposed algorithm is robust to noise and can provide a fast solution. Extensive experiments on real datasets demonstrate the effectiveness of our proposed method.
引用
收藏
页码:785 / 797
页数:12
相关论文
共 63 条
[1]  
Basri R(2003)Lambertian reflectance and linear subspaces IEEE Trans Pattern Anal Mach Intell 25 218-233
[2]  
Jacobs D(2009)Spectral curvature clustering (SCC) Int J Comput Vis 81 317-330
[3]  
Chen G(2013)Sparse subspace clustering: algorithm, theory, and applications IEEE Trans Pattern Anal Mach Intell 35 2765-2781
[4]  
Lerman G(1993)Pattern recognition by affine moment invariants Pattern Recognit 26 167-174
[5]  
Elhamifar E(1976)A dual algorithm for the solution of nonlinear variational problems via finite element approximation Comput Math Appl 2 17-40
[6]  
Vidal R(2015)Multimodal deep autoencoder for human pose recovery IEEE Trans Image Process 24 5659-5670
[7]  
Flusser J(2009)Robust kernel principal component analysis Neural Comput 21 3179-3213
[8]  
Suk T(1994)A database for handwritten text recognition research IEEE Trans Pattern Anal Mach Intell 16 550-554
[9]  
Gabay D(2005)Acquiring linear subspaces for face recognition under variable lighting IEEE Trans Pattern Anal Mach Intell 5 684-698
[10]  
Mercier B(2018)Scale-aware fast r-cnn for pedestrian detection IEEE Trans Multimed 20 985-996