Unsupervised multimodal modeling of cognitive and brain health trajectories for early dementia prediction

被引:0
作者
Burkhart, Michael C. [1 ]
Lee, Liz Y. [1 ]
Vaghari, Delshad [1 ]
Toh, An Qi [2 ]
Chong, Eddie [2 ]
Chen, Christopher [2 ]
Tino, Peter [3 ]
Kourtzi, Zoe [1 ]
机构
[1] Univ Cambridge, Dept Psychol, Cambridge CB2 3EB, England
[2] Natl Univ Singapore, Memory Aging & Cognit Ctr, Yong Loo Lin Sch Med, Dept Pharmacol, Singapore, Singapore
[3] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
ALZHEIMERS-DISEASE; HYPOTHETICAL MODEL; COMPOSITE SCORE; STATE; PROGRESSION; IMPAIRMENT; DIAGNOSIS; DRUGS;
D O I
10.1038/s41598-024-60914-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting the course of neurodegenerative disorders early has potential to greatly improve clinical management and patient outcomes. A key challenge for early prediction in real-world clinical settings is the lack of labeled data (i.e., clinical diagnosis). In contrast to supervised classification approaches that require labeled data, we propose an unsupervised multimodal trajectory modeling (MTM) approach based on a mixture of state space models that captures changes in longitudinal data (i.e., trajectories) and stratifies individuals without using clinical diagnosis for model training. MTM learns the relationship between states comprising expensive, invasive biomarkers (beta-amyloid, grey matter density) and readily obtainable cognitive observations. MTM training on trajectories stratifies individuals into clinically meaningful clusters more reliably than MTM training on baseline data alone and is robust to missing data (i.e., cognitive data alone or single assessments). Extracting an individualized cognitive health index (i.e., MTM-derived cluster membership index) allows us to predict progression to AD more precisely than standard clinical assessments (i.e., cognitive tests or MRI scans alone). Importantly, MTM generalizes successfully from research cohort to real-world clinical data from memory clinic patients with missing data, enhancing the clinical utility of our approach. Thus, our multimodal trajectory modeling approach provides a cost-effective and non-invasive tool for early dementia prediction without labeled data (i.e., clinical diagnosis) with strong potential for translation to clinical practice.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Could drugs prevent Alzheimer's? These trials aim to find out [J].
Abbott A. .
Nature, 2022, 603 (7900) :216-219
[2]   Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly [J].
Aizenstein, Howard Jay ;
Nebes, Robert D. ;
Saxton, Judith A. ;
Price, Julie C. ;
Mathis, Chester A. ;
Tsopelas, Nicholas D. ;
Ziolko, Scott K. ;
James, Jeffrey A. ;
Snitz, Beth E. ;
Houck, Patricia R. ;
Bi, Wenzhu ;
Cohen, Ann D. ;
Lopresti, Brian J. ;
DeKosky, Steven T. ;
Halligan, Edythe M. ;
Klunk, William E. .
ARCHIVES OF NEUROLOGY, 2008, 65 (11) :1509-1517
[3]   Inter-Cohort Validation of SuStaIn Model for Alzheimer's Disease [J].
Archetti, Damiano ;
Young, Alexandra L. ;
Oxtoby, Neil P. ;
Ferreira, Daniel ;
Martensson, Gustav ;
Westman, Eric ;
Alexander, Daniel C. ;
Frisoni, Giovanni B. ;
Redolfi, Alberto .
FRONTIERS IN BIG DATA, 2021, 4
[4]   Accuracy of the Clinical Diagnosis of Alzheimer Disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010 [J].
Beach, Thomas G. ;
Monsell, Sarah E. ;
Phillips, Leslie E. ;
Kukull, Walter .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2012, 71 (04) :266-273
[5]   Neuropsychological Measures that Predict Progression from Mild Cognitive Impairment to Alzheimer's type dementia in Older Adults: a Systematic Review and Meta-Analysis [J].
Belleville, Sylvie ;
Fouquet, Celine ;
Hudon, Carol ;
Zomahoun, Herve Tchala Vignon ;
Croteau, Jordie .
NEUROPSYCHOLOGY REVIEW, 2017, 27 (04) :328-353
[6]   Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data [J].
Bhagwat, Nikhil ;
Viviano, Joseph D. ;
Voineskos, Aristotle N. ;
Chakravarty, M. Mallar .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (09)
[7]   Effects of amyloid pathology and neurodegeneration on cognitive change in cognitively normal adults [J].
Bilgel, Murat ;
An, Yang ;
Helphrey, Jessica ;
Elkins, Wendy ;
Gomez, Gabriela ;
Wong, Dean F. ;
Davatzikos, Christos ;
Ferrucci, Luigi ;
Resnick, Susan M. .
BRAIN, 2018, 141 :2475-2485
[8]   Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review [J].
Borchert, Robin ;
Azevedo, Tiago ;
Badhwar, AmanPreet ;
Bernal, Jose ;
Betts, Matthew ;
Bruffaerts, Rose C. ;
Burkhart, Michael ;
Dewachter, Ilse M. ;
Gellersen, Helena ;
Low, Audrey ;
Lourida, Ilianna ;
Machado, Luiza R. ;
Madan, Christopher ;
Malpetti, Maura ;
Mejia, Jhony ;
Michopoulou, Sofia ;
Munoz-Neira, Carlos ;
Pepys, Jack ;
Peres, Marion ;
Phillips, Veronica ;
Ramanan, Siddharth ;
Tamburin, Stefano M. ;
Tantiangco, Hanz ;
Thakur, Lokendra ;
Tomassini, Alessandro ;
Vipin, Ashwati ;
Tang, Eugene ;
Newby, Danielle ;
Ranson, Janice M. ;
Llewellyn, David J. ;
Veldsman, Michele ;
Rittman, Timothy .
ALZHEIMERS & DEMENTIA, 2023, 9 (12) :5885-5904
[9]   Cognitive Resilience to Alzheimer's Disease Pathology in the Human Brain [J].
Bowles, Erin J. Aiello ;
Crane, Paul K. ;
Walker, Rod L. ;
Chubak, Jessica ;
LaCroix, Andrea Z. ;
Anderson, Melissa L. ;
Rosenberg, Dori ;
Keene, C. Dirk ;
Larson, Eric B. .
JOURNAL OF ALZHEIMERS DISEASE, 2019, 68 (03) :1071-1083
[10]  
Chiappa S., 2007, Tech. Rep. 161