Classification based on formal concept analysis and biclustering: Possibilities of the approach

被引:0
作者
A. A. Onishchenko
S. I. Gurov
机构
[1] Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
biclustering; Classification; formal concept analysis; pattern recognition;
D O I
10.1007/s10598-012-9141-2
中图分类号
学科分类号
摘要
Recent attempts have focused on the application of formal concept analysis (FCA) to classification (pattern recognition) problems. The article explores the effectiveness of this approach. © 2012 Springer Science+Business Media, Inc.
引用
收藏
页码:329 / 336
页数:7
相关论文
共 12 条
[1]  
Ganter B., Wille R., Formal Concept Analysis: Mathematical Foundations, (1999)
[2]  
Kuznetsov S.O., Lattice Theory for Intelligent Data Analysis
[3]  
Birkhoff G., Lattice Theory [Russian Translation], (1984)
[4]  
Ore O., Theory of Graphs [Russian Translation], (1980)
[5]  
Gurov S.I., Ordered Sets and Universal Algebra [in Russian], (2004)
[6]  
Finn V.K., On machine-oriented formalization of plausible reasoning in the style of F. Bacon and D. S. Mill, Semiotika I Informatika, 20, pp. 35-101, (1983)
[7]  
Mirkin B.G., Mathematical Classification and Clustering, (1996)
[8]  
Ignatov D., Biclustering Methods for the Analysis of Internet Data
[9]  
Ignatov D.I., Models, Algorithms, and Software for Biclustering Using Closed Sets
[10]  
Kuznetsov S.O., On stability of a formal concept, Jim, (2003)