Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials

被引:188
作者
Xu, Jiandong [1 ]
Gao, Qiuming [1 ]
Zhang, Yunlu [1 ]
Tan, Yanli [1 ]
Tian, Weiqian [1 ]
Zhu, Lihua [1 ]
Jiang, Lei [1 ]
机构
[1] Beihang Univ, Beijing Key Lab Bioinspired Energy Mat & Devices, Key Lab Bioinspired Smart Interfacial Sci & Techn, Minist Educ,Sch Chem & Environm, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
CHEMICAL-VAPOR-DEPOSITION; HIGH-PERFORMANCE; ACTIVATED CARBONS; POROUS CARBON; IONIC LIQUID; HYDROGEN STORAGE; SURFACE OXIDES; GRAPHENE FILMS; NANOTUBES; TEMPLATE;
D O I
10.1038/srep05545
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m(2) g(-1) is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA(+), diameter similar to 0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 mu F cm(-2) and high energy density of 10/39 Wh kg(-1) at power of 52/286 kW kg(-1) in 6 M KOH aqueous electrolyte and 1 M TEABF(4) in EC-DEC (1:1) organic electrolyte system, respectively.
引用
收藏
页数:6
相关论文
共 62 条
[1]   High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte [J].
Balducci, A. ;
Dugas, R. ;
Taberna, P. L. ;
Simon, P. ;
Plee, D. ;
Mastragostino, M. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :922-927
[2]   Surface functionality and porosity of activated carbons obtained from chemical activation of wood [J].
Benaddi, H ;
Bandosz, TJ ;
Jagiello, J ;
Schwarz, JA ;
Rouzaud, JN ;
Legras, D ;
Béguin, F .
CARBON, 2000, 38 (05) :669-674
[3]   Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method [J].
Che, G ;
Lakshmi, BB ;
Martin, CR ;
Fisher, ER ;
Ruoff, RS .
CHEMISTRY OF MATERIALS, 1998, 10 (01) :260-267
[4]   Electrochemical responses from surface oxides present on HNO3-treated carbons [J].
Cheng, PZ ;
Teng, HS .
CARBON, 2003, 41 (11) :2057-2063
[5]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[6]   Chemical vapor deposition of novel carbon materials [J].
Chow, L ;
Zhou, D ;
Hussain, A ;
Kleckley, S ;
Zollinger, K ;
Schulte, A ;
Wang, H .
THIN SOLID FILMS, 2000, 368 (02) :193-197
[7]  
Conway B.E., 1999, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
[8]   Synthesis of graphite by chlorination of iron carbide at moderate temperatures [J].
Dimovski, S ;
Nikitin, A ;
Ye, HH ;
Gogotsi, Y .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (02) :238-243
[9]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99
[10]   Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes [J].
Elmouwahidi, Abdelhakim ;
Zapata-Benabithe, Zulamita ;
Carrasco-Marin, Francisco ;
Moreno-Castilla, Carlos .
BIORESOURCE TECHNOLOGY, 2012, 111 :185-190