Generalized Schur Groups

被引:0
作者
G. K. Ryabov
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State Technical University,undefined
来源
Algebra and Logic | 2023年 / 62卷
关键词
Schur rings; Schur groups; p-groups; Camina groups; dihedral groups;
D O I
暂无
中图分类号
学科分类号
摘要
An S-ring (Schur ring) is said to be central if it is contained in the center of a group ring. We introduce the notion of a generalized Schur group, i.e., a finite group such that all central S-rings over this group are Schurian. It generalizes the notion of a Schur group in a natural way, and for Abelian groups, the two notions are equivalent. We prove basic properties and present infinite families of non-Abelian generalized Schur groups.
引用
收藏
页码:166 / 178
页数:12
相关论文
共 50 条
[31]   ON INFINITE CAMINA GROUPS [J].
Herzog, Marcel ;
Longobardi, Patrizia ;
Maj, Mercede .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) :4403-4419
[32]   SUPERCHARACTER THEORY CONSTRUCTIONS CORRESPONDING TO SCHUR RING PRODUCTS [J].
Hendrickson, Anders O. F. .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (12) :4420-4438
[33]   Common Neighborhood Energy of the Non-Commuting Graphs and Commuting Graphs Associated with Dihedral and Generalized Quaternion Groups [J].
Alashwali, Hanaa ;
Saleh, Anwar .
MATHEMATICS, 2025, 13 (11)
[34]   Schur rings over free Abelian group of rank two [J].
Chen, Gang ;
He, Jiawei ;
Wu, Zhiman .
JOURNAL OF ALGEBRA, 2025, 661 :622-640
[35]   Schur rings over Z x Z3 [J].
Chen, Gang ;
He, Jiawei .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) :4434-4446
[36]   Schur rings and association schemes whose thin residues are thin [J].
Xu, Bangteng .
JOURNAL OF ALGEBRA, 2017, 490 :441-461
[37]   On faithful quasi-permutation representations of VZ-groups and Camina p-groups [J].
Prajapati, Sunil Kumar ;
Udeep, Ayush .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (04) :1431-1446
[38]   Constructing linked systems of relative difference sets via Schur rings [J].
Muzychuk, Mikhail ;
Ryabov, Grigory .
DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (09) :2615-2637
[39]   On separable abelian p-groups [J].
Ryabov, Grigory .
ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) :467-479
[40]   MINIMAL NON-ABELIAN GROUPS AS AUTOMORPHISM GROUPS OF FINITE GROUPS [J].
Fouladi, S. ;
Orfi, R. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (05)