Generalized Schur Groups

被引:0
作者
G. K. Ryabov
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State Technical University,undefined
来源
Algebra and Logic | 2023年 / 62卷
关键词
Schur rings; Schur groups; p-groups; Camina groups; dihedral groups;
D O I
暂无
中图分类号
学科分类号
摘要
An S-ring (Schur ring) is said to be central if it is contained in the center of a group ring. We introduce the notion of a generalized Schur group, i.e., a finite group such that all central S-rings over this group are Schurian. It generalizes the notion of a Schur group in a natural way, and for Abelian groups, the two notions are equivalent. We prove basic properties and present infinite families of non-Abelian generalized Schur groups.
引用
收藏
页码:166 / 178
页数:12
相关论文
共 50 条
[21]   CHARACTERIZING FINITE p-GROUPS BY THEIR SCHUR MULTIPLIERS, t(G)=5 [J].
Niroomand, Peyman .
MATHEMATICAL REPORTS, 2015, 17 (02) :249-254
[22]   Generalized Bessel Function Associated with Dihedral Groups [J].
Demni, Nizar .
JOURNAL OF LIE THEORY, 2012, 22 (01) :81-91
[23]   On the number of solutions of a generalized commutator equation in finite groups [J].
Nath, R. K. ;
Prajapati, S. K. .
ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) :18-37
[24]   Generalized Quaternion Groups with the m-DCI Property [J].
Xie, Jin-Hua ;
Feng, Yan-Quan ;
Xia, Binzhou .
ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (02)
[25]   On schurity of dihedral groups [J].
Ryabov, Grigory .
JOURNAL OF ALGEBRA, 2025, 682 :247-277
[26]   Weak Cayley tables and generalized centralizer rings of finite groups [J].
Humphries, Stephen P. ;
Rode, Emma L. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 :281-318
[27]   Schur multipliers and the Lazard correspondence [J].
Eick, Bettina ;
Horn, Max ;
Zandi, Seiran .
ARCHIV DER MATHEMATIK, 2012, 99 (03) :217-226
[28]   On dimension of the Schur multiplier of nilpotent Lie algebras [J].
Niroomand, Peyman .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (01) :57-64
[29]   Schur rings over infinite dihedral group [J].
Chen, Gang ;
He, Jiawei ;
Wu, Zhiman .
COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) :2534-2542
[30]   The unitary cover of a finite group and the exponent of the Schur multiplier [J].
Sambonet, Nicola .
JOURNAL OF ALGEBRA, 2015, 426 :344-364