On geodesibility of algebrizable planar vector fields

被引:0
作者
M. E. Frías-Armenta
E. López-González
机构
[1] Universidad de Sonora,Departamento de Matemáticas
[2] Universidad Autónoma de Ciudad Juárez,Unidad Multidisciplinaria de la UACJ en Cuauhtémoc
来源
Boletín de la Sociedad Matemática Mexicana | 2019年 / 25卷
关键词
Vector fields; Riemannian metrics; Lorch differentiability; Geodesible vector fields; 37C10; 53B20; 58C20; 53C22;
D O I
暂无
中图分类号
学科分类号
摘要
Geodesibility of vector fields was studied by Gluck and Sullivan in the 1970s. For the case of complex analytical vector fields, Jenkins shed light on the subject from the end of the 1950s. After the 1970s, multiple authors have studied the subject, such as K. Strebel, and Muciño-Raymundo and Valero-Valdéz. In this paper, we consider planar vector fields which are A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}$$\end{document}-algebrizable (differentiable in the sense of Lorch for some associative and commutative algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}$$\end{document} with unit e). We give rectifications of these vector fields and metrics under which they are geodesible.
引用
收藏
页码:163 / 186
页数:23
相关论文
共 10 条
  • [1] Frías-Armenta ME(2013)Topological and analytical classification of vector fields with only isochronous centres J. Differ. Equ. Appl. 19 1694-1728
  • [2] Muciño-Raymundo J(1928)Analytic functions of hypercomplex variables Trans. Am. Math. Soc. 30 641-667
  • [3] Ketchum P(2011)Differential equations over algebras Adv. Appl. Math. Sci. 8 189-214
  • [4] López-González E(1943)The theory of analytic functions in normed Abelian Vector Rings Trans. Am. Math. Soc 54 414-425
  • [5] Lorch E(2002)Complex structures adapted to smooth vector fields Math. Ann. 322 229-265
  • [6] Muciño-Raymundo J(1995)Bifurcations of meromorphic vector fields on the Riemann sphere Ergod. Theor. Dyn. Syst. 15 1211-1222
  • [7] Muciño-Raymundo J(1940)A theory of analytic functions in linear associative algebras Duke Math. J. 7 233-248
  • [8] Valero-Valdéz C(1953)From generalized Cauchy–Riemann equations to linear algebra Proc. Am. Math. Soc. 4 456-461
  • [9] Ward J(undefined)undefined undefined undefined undefined-undefined
  • [10] Ward J(undefined)undefined undefined undefined undefined-undefined