Robust anomaly-based intrusion detection system for in-vehicle network by graph neural network framework

被引:0
|
作者
Junchao Xiao
Lin Yang
Fuli Zhong
Hongbo Chen
Xiangxue Li
机构
[1] Sun Yat-Sen University,School of Systems Science and Engineering
[2] Chinese Academy of Military Science,National Key Laboratory of Science and Technology on Information System Security, Institute of System Engineering
[3] East China Normal University,School of Software Engineering
来源
Applied Intelligence | 2023年 / 53卷
关键词
Anomaly detection; CAN; Graph neural network;
D O I
暂无
中图分类号
学科分类号
摘要
With the development of Internet of Vehicles (IoVs) techniques, many emerging technologies and their applications are integrated with IoVs. The application of these new technologies requires vehicles to communicate with external networks frequently, which makes the in-vehicle network more vulnerable to hacker attacks. It is imperative to detect hacker attacks on in-vehicle networks. A control area network graph attention networks (CAN-GAT) model is proposed to implement the anomaly detection of in-vehicle networks, and a graph neural network (GNN) anomaly-based detection framework using graph convolution, graph attention and CAN-GAT network model for in-vehicle network based on CAN bus is presented. In this detection framework, a graph is designed with the traffic on the CAN bus to capture the correlation between the change of the traffic bytes and the state of other traffic bytes effectively and help improve the detection accuracy and efficiency. Compared simulation experiments are conducted to test the proposed model, and the obtained model performance metrics results show that the CAN-GAT-2 model based on two-layer CAN-GAT achieves better performance. In addition, the visualization and quantitative analysis methods are used to explain how can the attention mechanism of CAN-GAT-2 improve the performance, which can help to construct better GNNs in anomaly detection of in-vehicle network. The model performance evaluation results show that CAN-GAT-2 achieved improved accuracy among the compared baseline methods, and has good detection speed performance.
引用
收藏
页码:3183 / 3206
页数:23
相关论文
共 50 条
  • [1] Robust anomaly-based intrusion detection system for in-vehicle network by graph neural network framework
    Xiao, Junchao
    Yang, Lin
    Zhong, Fuli
    Chen, Hongbo
    Li, Xiangxue
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3183 - 3206
  • [2] Robust Anomaly-Based Insider Threat Detection Using Graph Neural Network
    Xiao, Junchao
    Yang, Lin
    Zhong, Fuli
    Wang, Xiaolei
    Chen, Hongbo
    Li, Dongyang
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (03): : 3717 - 3733
  • [3] In-Vehicle Network Anomaly Detection Based on a Graph Attention Network
    Luo, Feng
    Luo, Cheng
    Wang, Jiajia
    Li, Zhihao
    SAE INTERNATIONAL JOURNAL OF CONNECTED AND AUTOMATED VEHICLES, 2025, 8 (04):
  • [4] A&D Graph-Based Graph Neural Network Intrusion Detection for In-Vehicle Controller Area Network
    He, Yaru
    Gao, Jiaqi
    Fan, Mingrui
    Han, Daoqi
    Lu, Yueming
    Qiao, Yaojun
    2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC, 2024,
  • [5] LSTM for Anomaly-Based Network Intrusion Detection
    Althubiti, Sara A.
    Jones, Eric Marcell, Jr.
    Roy, Kaushik
    2018 28TH INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), 2018, : 293 - 295
  • [6] Intrusion Detection for In-Vehicle CAN Bus Based on Lightweight Neural Network
    Ding, Defeng
    Wei, Yehua
    Cheng, Can
    Long, Jing
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (07)
  • [7] Anomaly-based network intrusion detection: Techniques, systems and challenges
    Garcia-Teodoro, P.
    Diaz-Verdejo, J.
    Macia-Fernandez, G.
    Vazquez, E.
    COMPUTERS & SECURITY, 2009, 28 (1-2) : 18 - 28
  • [8] A Performance-Oriented Comparison of Neural Network Approaches for Anomaly-based Intrusion Detection
    Iannucci, Stefano
    Ables, Jesse
    Anderson, William
    Abburi, Bhuvanesh
    Cardellini, Valeria
    Banicescu, Ioana
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [9] Design of Anomaly-Based Intrusion Detection System Using Fog Computing for IoT Network
    Kumar, Prabhat
    Gupta, Govind P.
    Tripathi, Rakesh
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2021, 55 (02) : 137 - 147
  • [10] Design of Anomaly-Based Intrusion Detection System Using Fog Computing for IoT Network
    Govind P. Prabhat Kumar
    Rakesh Gupta
    Automatic Control and Computer Sciences, 2021, 55 : 137 - 147