A Liouville-type theorem for biharmonic maps between complete Riemannian manifolds with small energies

被引:0
|
作者
Volker Branding
机构
[1] University of Vienna,Faculty of Mathematics
来源
Archiv der Mathematik | 2018年 / 111卷
关键词
Biharmonic maps; Complete Riemannian manifolds; Liouville theorem; 58E20; 53C43;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Liouville-type theorem for biharmonic maps from a complete Riemannian manifold of dimension n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} that has a lower bound on its Ricci curvature and positive injectivity radius into a Riemannian manifold whose sectional curvature is bounded from above. Under these geometric assumptions we show that if the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-norm of the tension field is bounded and the n-energy of the map is sufficiently small, then every biharmonic map must be harmonic, where 2<p<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<n$$\end{document}.
引用
收藏
页码:329 / 336
页数:7
相关论文
共 50 条