A Liouville-type theorem for biharmonic maps between complete Riemannian manifolds with small energies

被引:0
作者
Volker Branding
机构
[1] University of Vienna,Faculty of Mathematics
来源
Archiv der Mathematik | 2018年 / 111卷
关键词
Biharmonic maps; Complete Riemannian manifolds; Liouville theorem; 58E20; 53C43;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Liouville-type theorem for biharmonic maps from a complete Riemannian manifold of dimension n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} that has a lower bound on its Ricci curvature and positive injectivity radius into a Riemannian manifold whose sectional curvature is bounded from above. Under these geometric assumptions we show that if the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-norm of the tension field is bounded and the n-energy of the map is sufficiently small, then every biharmonic map must be harmonic, where 2<p<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<n$$\end{document}.
引用
收藏
页码:329 / 336
页数:7
相关论文
共 13 条
[1]  
Baird P(2010)Liouville-type theorems for biharmonic maps between Riemannian manifolds Adv. Calc. Var. 3 49-68
[2]  
Fardoun A(1954)A special Stokes’s theorem for complete Riemannian manifolds Ann. of Math. (2) 60 140-145
[3]  
Ouakkas S(1971)On Liouville’s theorem for biharmonic functions SIAM J. Appl. Math. 20 37-39
[4]  
Gaffney M P(2015)Liouville-type theorems on complete manifolds and non-existence of bi-harmonic maps J. Geom. Anal. 25 2436-2449
[5]  
Huilgol RR(2016)Remarks on the nonexistence of biharmonic maps Arch. Math. 107 191-200
[6]  
Luo Y(2014)Biharmonic maps from a complete Riemannian manifold into a non-positively curved manifold Ann. Global Anal. Geom. 46 75-85
[7]  
Luo Y(2006)A short survey on biharmonic maps between Riemannian manifolds Rev. Un. Mat. Argentina 47 1-22
[8]  
Maeta S(2014)Biharmonic maps into a Riemannian manifold of non-positive curvature Geom. Dedicata 169 263-272
[9]  
Montaldo S(undefined)undefined undefined undefined undefined-undefined
[10]  
Oniciuc C(undefined)undefined undefined undefined undefined-undefined