Nonlinear integrals and Hadamard-type inequalities

被引:0
|
作者
Sadegh Abbaszadeh
Ali Ebadian
机构
[1] Payame Noor University,Department of Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
Pseudo-operation; -integral; Hadamard inequality; Convex function;
D O I
暂无
中图分类号
学科分类号
摘要
The Hadamard integral inequality for nonlinear integrals has been proved by some researchers, but the obtained inequalities do not look like the classical Hadamard inequality. In this paper, we provide a refinement of the Hadamard integral inequality for g-integrals as ∫[0,1]⊕f((1-t)a+tb)⊙dm⩽g-112⊙(f(a)⊕f(b)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{[0,1]}^{\oplus } f\big ((1- t)a+ tb\big ) \odot \mathrm {d}m \leqslant g^{-1}\left( \frac{1}{2}\right) \odot \big (f(a)\oplus f(b)\big ), \end{aligned}$$\end{document}for which by choosing the convex and increasing function g(x)=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x)= x$$\end{document}, we get the classical Hadamard inequality. Consequently, we establish some novel integral inequalities, the Hadamard-type integral inequalities for a pseudo-multiplication of n convex (concave) functions, in the framework of g-integrals.
引用
收藏
页码:2843 / 2849
页数:6
相关论文
共 50 条
  • [41] New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals
    Budak, Huseyin
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 369 - 386
  • [42] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [43] Hermite-Hadamard type inequalities for fractional integrals via Green's function
    Khan, Muhammad Adil
    Iqbal, Arshad
    Suleman, Muhammad
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [44] Integral inequalities of Hermite-Hadamard type via q-h integrals
    Chen, Dong
    Anwar, Matloob
    Farid, Ghulam
    Bibi, Waseela
    AIMS MATHEMATICS, 2023, 8 (07): : 16165 - 16174
  • [45] Hermite-Hadamard type inequalities based on the Erdelyi-Kober fractional integrals
    Hai, XuRan
    Wang, ShuHong
    AIMS MATHEMATICS, 2021, 6 (10): : 11494 - 11507
  • [46] On Some New Extensions of Inequalities of Hermite-Hadamard Type for Generalized Fractional Integrals
    Budak, Huseyin
    Bilisik, Candan Can
    Sarikaya, Mehmet Zeki
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 65 - 79
  • [47] Hermite–Hadamard-type inequalities for geometrically r-convex functions in terms of Stolarsky’s mean with applications to means
    Muhammad Amer Latif
    Advances in Difference Equations, 2021
  • [48] Hermite-Hadamard-type inequalities for functions whose derivatives are -convex via fractional integrals
    Kwun, Young Chel
    Saleem, Muhammad Shoaib
    Ghafoor, Mamoona
    Nazeer, Waqas
    Kang, Shin Min
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [49] Hermite-Hadamard Type Inequalities for Twice Differantiable Functions via Generalized Fractional Integrals
    Budak, Huseyin
    Ertugral, Fatma
    Pehlivan, Ebru
    FILOMAT, 2019, 33 (15) : 4967 - 4979
  • [50] On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals
    Set, Erhan
    Iscan, Imdat
    Sarikaya, M. Zeki
    Ozdemir, M. Emin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 875 - 881