Nonlinear integrals and Hadamard-type inequalities

被引:0
|
作者
Sadegh Abbaszadeh
Ali Ebadian
机构
[1] Payame Noor University,Department of Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
Pseudo-operation; -integral; Hadamard inequality; Convex function;
D O I
暂无
中图分类号
学科分类号
摘要
The Hadamard integral inequality for nonlinear integrals has been proved by some researchers, but the obtained inequalities do not look like the classical Hadamard inequality. In this paper, we provide a refinement of the Hadamard integral inequality for g-integrals as ∫[0,1]⊕f((1-t)a+tb)⊙dm⩽g-112⊙(f(a)⊕f(b)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{[0,1]}^{\oplus } f\big ((1- t)a+ tb\big ) \odot \mathrm {d}m \leqslant g^{-1}\left( \frac{1}{2}\right) \odot \big (f(a)\oplus f(b)\big ), \end{aligned}$$\end{document}for which by choosing the convex and increasing function g(x)=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x)= x$$\end{document}, we get the classical Hadamard inequality. Consequently, we establish some novel integral inequalities, the Hadamard-type integral inequalities for a pseudo-multiplication of n convex (concave) functions, in the framework of g-integrals.
引用
收藏
页码:2843 / 2849
页数:6
相关论文
共 50 条
  • [31] On Hermite-Hadamard type inequalities via generalized fractional integrals
    Jleli, Mohamed
    O'Regan, Donal
    Samet, Bessem
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (06) : 1221 - 1230
  • [32] Hadamard and Fejér–Hadamard type inequalities for harmonically convex functions via generalized fractional integrals
    Abbas G.
    Farid G.
    The Journal of Analysis, 2017, 25 (1) : 107 - 119
  • [33] ON HADAMARD TYPE INEQUALITIES FOR m-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Farid, G.
    Rehman, A. Ur
    Tariq, B.
    Waheed, A.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (04): : 150 - 167
  • [34] Hermite–Hadamard type inequalities for fractional integrals via Green’s function
    Muhammad Adil Khan
    Arshad Iqbal
    Muhammad Suleman
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2018
  • [35] On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates
    Ozdemir, Muhamet Emin
    Latif, Muhammad Amer
    Akdemir, Ahmet Ocak
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012, : 1 - 13
  • [36] On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates
    Muhamet Emin Özdemir
    Muhammad Amer Latif
    Ahmet Ocak Akdemir
    Journal of Inequalities and Applications, 2012
  • [37] Hadamard and Fejer-Hadamard inequalities for extended generalized fractional integrals involving special functions
    Kang, Shin Min
    Farid, Ghulam
    Nazeer, Waqas
    Tariq, Bushra
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [38] Hadamard and Fejér–Hadamard inequalities for extended generalized fractional integrals involving special functions
    Shin Min Kang
    Ghulam Farid
    Waqas Nazeer
    Bushra Tariq
    Journal of Inequalities and Applications, 2018
  • [39] NEW HADAMARD-TYPE INEQUALITIES VIA (S, M1, M2)-CONVEX FUNCTIONS
    Bayraktar, B.
    Butt, S., I
    Shaokat, Sh
    Napoles Valdes, J. E.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2021, 31 (04): : 597 - 612
  • [40] A study on Hermite-Hadamard-type inequalities via new fractional conformable integrals
    Set, Erhan
    Gozpinar, Abdurrahman
    Butt, Saad Ihsan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (02)