Nonlinear integrals and Hadamard-type inequalities

被引:0
|
作者
Sadegh Abbaszadeh
Ali Ebadian
机构
[1] Payame Noor University,Department of Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
Pseudo-operation; -integral; Hadamard inequality; Convex function;
D O I
暂无
中图分类号
学科分类号
摘要
The Hadamard integral inequality for nonlinear integrals has been proved by some researchers, but the obtained inequalities do not look like the classical Hadamard inequality. In this paper, we provide a refinement of the Hadamard integral inequality for g-integrals as ∫[0,1]⊕f((1-t)a+tb)⊙dm⩽g-112⊙(f(a)⊕f(b)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{[0,1]}^{\oplus } f\big ((1- t)a+ tb\big ) \odot \mathrm {d}m \leqslant g^{-1}\left( \frac{1}{2}\right) \odot \big (f(a)\oplus f(b)\big ), \end{aligned}$$\end{document}for which by choosing the convex and increasing function g(x)=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x)= x$$\end{document}, we get the classical Hadamard inequality. Consequently, we establish some novel integral inequalities, the Hadamard-type integral inequalities for a pseudo-multiplication of n convex (concave) functions, in the framework of g-integrals.
引用
收藏
页码:2843 / 2849
页数:6
相关论文
共 50 条
  • [21] Some Generalized Hadamard–Type Inequalities via Fractional Integrals
    B. Bayraktar
    A. Kh. Attaev
    V. Ch. Kudaev
    Russian Mathematics, 2021, 65 : 1 - 14
  • [22] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048
  • [23] Hermite-Hadamard-Mercer Type Inequalities for Fractional Integrals
    Ogulmus, Hatice
    Sarikaya, Mehmet Zeki
    FILOMAT, 2021, 35 (07) : 2425 - 2436
  • [24] HERMITE-HADAMARD TYPE INEQUALITIES FOR KATUGAMPOLA FRACTIONAL INTEGRALS
    Wang, Shu-Hong
    Hai, Xu-Ran
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1650 - 1667
  • [25] Conformable fractional versions of Hermite–Hadamard-type inequalities for twice-differentiable functions
    Fatih Hezenci
    Hasan Kara
    Hüseyin Budak
    Boundary Value Problems, 2023
  • [26] New Hadamard-type integral inequalities via a general form of fractional integral operators
    Butt, Saad Ihsan
    Yousaf, Saba
    Akdemir, Ahmet Ocak
    Dokuyucu, Mustafa Ali
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [27] On Hadamard Type Fractional Inequalities for Riemann-Liouville Integrals via a Generalized Convexity
    Yan, Tao
    Farid, Ghulam
    Yasmeen, Hafsa
    Jung, Chahn Yong
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [28] On Hermite–Hadamard type inequalities for newly defined generalized quantum integrals
    Hasan Kara
    Hüseyin Budak
    Ricerche di Matematica, 2024, 73 : 1145 - 1166
  • [29] ON HERMITE-HADAMARD TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Yaldiz, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 773 - 785
  • [30] New Hermite-Hadamard-type inequalities for fractional integrals and their applications
    Hwang, Shiow-Ru
    Tseng, Kuei-Lin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1211 - 1223