Nonlinear integrals and Hadamard-type inequalities

被引:0
|
作者
Sadegh Abbaszadeh
Ali Ebadian
机构
[1] Payame Noor University,Department of Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
Pseudo-operation; -integral; Hadamard inequality; Convex function;
D O I
暂无
中图分类号
学科分类号
摘要
The Hadamard integral inequality for nonlinear integrals has been proved by some researchers, but the obtained inequalities do not look like the classical Hadamard inequality. In this paper, we provide a refinement of the Hadamard integral inequality for g-integrals as ∫[0,1]⊕f((1-t)a+tb)⊙dm⩽g-112⊙(f(a)⊕f(b)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{[0,1]}^{\oplus } f\big ((1- t)a+ tb\big ) \odot \mathrm {d}m \leqslant g^{-1}\left( \frac{1}{2}\right) \odot \big (f(a)\oplus f(b)\big ), \end{aligned}$$\end{document}for which by choosing the convex and increasing function g(x)=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x)= x$$\end{document}, we get the classical Hadamard inequality. Consequently, we establish some novel integral inequalities, the Hadamard-type integral inequalities for a pseudo-multiplication of n convex (concave) functions, in the framework of g-integrals.
引用
收藏
页码:2843 / 2849
页数:6
相关论文
共 50 条
  • [1] Nonlinear integrals and Hadamard-type inequalities
    Abbaszadeh, Sadegh
    Ebadian, Ali
    SOFT COMPUTING, 2018, 22 (09) : 2843 - 2849
  • [2] Some Generalized Hadamard-Type Inequalities via Fractional Integrals
    Bayraktar, B.
    Attaev, A. Kh
    Kudaev, V. Ch
    RUSSIAN MATHEMATICS, 2021, 65 (02) : 1 - 14
  • [3] New Hermite–Hadamard-type inequalities for fractional integrals and their applications
    Shiow-Ru Hwang
    Kuei-Lin Tseng
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 1211 - 1223
  • [4] SOME NEW GENERALIZATIONS OF HADAMARD-TYPE MIDPOINT INEQUALITIES INVOLVING FRACTIONAL INTEGRALS
    Bayraktar, B.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (03): : 66 - 82
  • [5] Hermite–Hadamard-type inequalities for functions whose derivatives are η-convex via fractional integrals
    Young Chel Kwun
    Muhammad Shoaib Saleem
    Mamoona Ghafoor
    Waqas Nazeer
    Shin Min Kang
    Journal of Inequalities and Applications, 2019
  • [6] On Hadamard-Type Inequalities Involving Several Kinds of Convexity
    Erhan Set
    MEmin Özdemir
    SeverS Dragomir
    Journal of Inequalities and Applications, 2010
  • [7] ON THE REFINEMENTS OF HADAMARD-TYPE INEQUALITIES AND THEIR APPLICATIONS FOR CUBATURE FORMULAS
    Hsu, Kai-Chen
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2016, 53 (03) : 399 - 428
  • [8] On Hadamard-Type Inequalities Involving Several Kinds of Convexity
    Set, Erhan
    Ozdemir, M. Emin
    Dragomir, Sever S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [9] SOME RESULTS FOR HADAMARD-TYPE INEQUALITIES IN QUANTUM CALCULUS
    Taf, Sabrina
    Brahim, Kamel
    Riahi, Latifa
    MATEMATICHE, 2014, 69 (02): : 243 - 258
  • [10] Hermite-Hadamard-type inequalities for conformable integrals
    Bohner, Martin
    Kashuri, Artion
    Mohammed, Pshtiwan Othman
    Napoles Valdes, Juan E.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (03): : 775 - 786