Internal electrical fault detection techniques in DFIG-based wind turbines: a review

被引:0
作者
Abdelwahab D. Bebars
Abdelfattah A. Eladl
Gabr M. Abdulsalam
Ebrahim A. Badran
机构
[1] Mansoura University,Electrical Engineering Department, Faculty of Engineering
来源
Protection and Control of Modern Power Systems | 2022年 / 7卷
关键词
DFIG; Wind turbines; Internal fault detection; Reliability improvement;
D O I
暂无
中图分类号
学科分类号
摘要
The keys factor in making wind power one of the main power sources to meet the world's growing energy demands is the reliability improvement of wind turbines (WTs). However, the eventuality of fault occurrence on WT components cannot be avoided, especially for doubly-fed induction generator (DFIG) based WTs, which are operating in severe environments. The maintenance need increases due to unexpected faults, which in turn leads to higher operating cost and poor reliability. Extensive investigation into DFIG internal fault detection techniques has been carried out in the last decade. This paper presents a detailed review of these techniques. It discusses the methods that can be used to detect internal electrical faults in a DFIG stator, rotor, or both. A novel sorting technique is presented which takes into consideration different parameters such as fault location, detection technique, and DFIG modelling. The main mathematical representation used to detect these faults is presented to allow an easier and faster understanding of each method. In addition, a comparison is carried out in every section to illustrate the main differences, advantages, and disadvantages of every method and/or model. Some real monitoring systems available in the market are presented. Finally, recommendations for the challenges, future work, and main gaps in the field of internal faults in a DFIG are presented. This review is organized in a tutorial manner, to be an effective guide for future research for enhancing the reliability of DFIG-based WTs.
引用
收藏
相关论文
共 50 条
  • [1] Internal electrical fault detection techniques in DFIG-based wind turbines: a review
    Bebars, Abdelwahab D.
    Eladl, Abdelfattah A.
    Abdulsalam, Gabr M.
    Badran, Ebrahim A.
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2022, 7 (01)
  • [2] Blackstart and Fault Ride-Through Capability of DFIG-Based Wind Turbines
    Dang, Hoang P.
    Pico, Hugo Villegas N.
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (03) : 2060 - 2074
  • [3] Fault-Ride Through Capability Enhancement of DFIG-Based Wind Turbines by SFCL
    Abdellatif, Walid S. E.
    Alaboudy, Ali H. Kasem
    Azmy, Ahmed M.
    2018 TWENTIETH INTERNATIONAL MIDDLE EAST POWER SYSTEMS CONFERENCE (MEPCON), 2018, : 1104 - 1109
  • [4] Modeling of complete fault ride-through processes for DFIG-Based wind turbines
    Li, Weixing
    Chao, Pupu
    Liang, Xiaodong
    Sun, Yong
    Qi, Jinling
    Chang, Xuefei
    RENEWABLE ENERGY, 2018, 118 : 1001 - 1014
  • [5] Unbalanced Control System Design for DFIG-Based Wind Turbines
    Yang, Shuying
    Zhan, Long
    Huang, Changxi
    Xie, Zhen
    2012 POWER ENGINEERING AND AUTOMATION CONFERENCE (PEAM), 2012, : 15 - 18
  • [6] Comparison of Inertia Control Methods for DFIG-based Wind Turbines
    Zhang, Zhiheng
    Wang, Yi
    Li, Heming
    Su, Xiaoqing
    2013 IEEE ECCE ASIA DOWNUNDER (ECCE ASIA), 2013, : 960 - 964
  • [7] Improving the Fault Ride-through Capability of DFIG-Based Wind Turbines Using the Dynamic Impedance
    Liang, Yabo
    Cao, Yunzhu
    Li, Lei
    Sheng, Yaru
    Niu, Jian
    He, Jianan
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1185 - 1189
  • [8] Enhancement of LVRT Capability in DFIG-Based Wind Turbines with STATCOM and Supercapacitor
    Dosoglu, M. Kenan
    SUSTAINABILITY, 2023, 15 (03)
  • [9] Enhancement of Dynamic Modeling for LVRT Capability in DFIG-Based Wind Turbines
    Doesoglu, M. Kenan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2020, 44 (04) : 1345 - 1356
  • [10] Supplemental Control for System Frequency Support of DFIG-Based Wind Turbines
    Abdeen, Mohamed
    Sayyed, Muhammad
    Luis Dominguez-Garcia, Jose
    Kamel, Salah
    IEEE ACCESS, 2022, 10 (69364-69372): : 69364 - 69372