Absolute graphs with prescribed endomorphism monoid

被引:0
|
作者
Manfred Droste
Rüdiger Göbel
Sebastian Pokutta
机构
[1] University of Leipzig,Institute of Computer Science
[2] University of Duisburg-Essen,Department of Mathematics
[3] Massachusetts Institute of Technology,Operations Research Center
来源
Semigroup Forum | 2008年 / 76卷
关键词
Absolute endomorphism monoids; Action of semigroups on sets; Colored graphs; Absoluteness;
D O I
暂无
中图分类号
学科分类号
摘要
We consider endomorphism monoids of graphs. It is well-known that any monoid can be represented as the endomorphism monoid M of some graph Γ with countably many colors. We give a new proof of this theorem such that the isomorphism between the endomorphism monoid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathop{\rm End}\nolimits (\Gamma)$\end{document} and M is absolute, i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathop{\rm End}\nolimits (\Gamma)\cong M$\end{document} holds in any generic extension of the given universe of set theory. This is true if and only if |M|,|Γ| are smaller than the first Erdős cardinal (which is known to be strongly inaccessible). We will encode Shelah’s absolutely rigid family of trees (Isr. J. Math. 42(3), 177–226, 1982) into Γ. The main result will be used to construct fields with prescribed absolute endomorphism monoids, see Göbel and Pokutta (Shelah’s absolutely rigid trees and absolutely rigid fields, in preparation).
引用
收藏
页码:256 / 267
页数:11
相关论文
共 50 条
  • [1] Absolute graphs with prescribed endomorphism monoid
    Droste, Manfred
    Goebel, Ruediger
    Pokutta, Sebastian
    SEMIGROUP FORUM, 2008, 76 (02) : 256 - 267
  • [2] Graphs with a regular endomorphism monoid
    Wilkeit, E
    ARCHIV DER MATHEMATIK, 1996, 66 (04) : 344 - 352
  • [3] On Graphs with a Given Endomorphism Monoid
    Koubek, Vaclav
    Roedl, Vojtech
    Shemmer, Benjamin
    JOURNAL OF GRAPH THEORY, 2009, 62 (03) : 241 - 262
  • [4] On the number of graphs with a given endomorphism monoid
    Koubek, Vaclav
    Rodl, Vojtech
    DISCRETE MATHEMATICS, 2010, 310 (03) : 376 - 384
  • [5] Generalized lexicographic product of graphs and strong endomorphism monoid
    Liu, XS
    Chen, XE
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2000, 25 (2C): : 173 - 177
  • [6] Endomorphism Monoid of C2n+1 Book Graphs
    Thomkeaw, Jakkrit
    Arworn, Srichan
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (02): : 319 - 327
  • [7] On the endomorphism monoid of a profinite semigroup
    Steinberg, Benjamin
    PORTUGALIAE MATHEMATICA, 2011, 68 (02) : 177 - 183
  • [8] On the Endomorphism Monoid of K(n, 3)
    Hou, Hailong
    Luo, Yanfeng
    Gu, Rui
    ALGEBRA COLLOQUIUM, 2012, 19 (03) : 447 - 458
  • [9] The rank of the endomorphism monoid of a uniform partition
    Araujo, Joao
    Schneider, Csaba
    SEMIGROUP FORUM, 2009, 78 (03) : 498 - 510
  • [10] On the endomorphism monoid of K(n, 4)
    Hou, Hailong
    Gu, Rui
    ARS COMBINATORIA, 2014, 117 : 225 - 244