Absolute graphs with prescribed endomorphism monoid
被引:0
|
作者:
Manfred Droste
论文数: 0引用数: 0
h-index: 0
机构:University of Leipzig,Institute of Computer Science
Manfred Droste
Rüdiger Göbel
论文数: 0引用数: 0
h-index: 0
机构:University of Leipzig,Institute of Computer Science
Rüdiger Göbel
Sebastian Pokutta
论文数: 0引用数: 0
h-index: 0
机构:University of Leipzig,Institute of Computer Science
Sebastian Pokutta
机构:
[1] University of Leipzig,Institute of Computer Science
[2] University of Duisburg-Essen,Department of Mathematics
[3] Massachusetts Institute of Technology,Operations Research Center
来源:
Semigroup Forum
|
2008年
/
76卷
关键词:
Absolute endomorphism monoids;
Action of semigroups on sets;
Colored graphs;
Absoluteness;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider endomorphism monoids of graphs. It is well-known that any monoid can be represented as the endomorphism monoid M of some graph Γ with countably many colors. We give a new proof of this theorem such that the isomorphism between the endomorphism monoid
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathop{\rm End}\nolimits (\Gamma)$\end{document}
and M is absolute, i.e.
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathop{\rm End}\nolimits (\Gamma)\cong M$\end{document}
holds in any generic extension of the given universe of set theory. This is true if and only if |M|,|Γ| are smaller than the first Erdős cardinal (which is known to be strongly inaccessible). We will encode Shelah’s absolutely rigid family of trees (Isr. J. Math. 42(3), 177–226, 1982) into Γ. The main result will be used to construct fields with prescribed absolute endomorphism monoids, see Göbel and Pokutta (Shelah’s absolutely rigid trees and absolutely rigid fields, in preparation).
机构:
Univ Aberta, P-1269001 Lisbon, Portugal
Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, PortugalUniv Aberta, P-1269001 Lisbon, Portugal
Araujo, Joao
Schneider, Csaba
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, Portugal
Comp & Automat Res Inst, Informat Res Lab, H-1518 Budapest, HungaryUniv Aberta, P-1269001 Lisbon, Portugal