Deep Fusion of Hyperspectral and LiDAR Images Using Attention-Based CNN

被引:0
作者
Falahatnejad S. [1 ]
Karami A. [1 ]
机构
[1] Faculty of Physics, Shahid Bahonar University of Kerman, Kerman
关键词
Attention modules; Classification; Fusion; Hyperspectral Images; LiDAR;
D O I
10.1007/s42979-022-01425-1
中图分类号
学科分类号
摘要
In this paper, an accurate and fast fusion technique for combining the spectral and spatial contents of hyperspectral images (HSI) with the height information of light detection and ranging (LiDAR) is proposed to increase the classification accuracy of HSI. First, a sub-network consists of a hybrid 3D/2D convolutional neural networks (CNNs) and two attention modules is applied to HSI to extract the spectral-spatial features. These modules are used to enhance CNN’s focus on more informative features. Second, the representative elevation features of LiDAR are exploited using a sub-network that is constructed by a 2D-CNN and an attention module. Third, the spectral-spatial information of HSI and the obtained elevation features of LiDAR images are integrated and classified using the softmax classifier. The proposed method is applied to two real datasets and compared with some state-of-the-art fusion algorithms. The experimental results show that the proposed model increases classification accuracy and decreases computational complexity. © 2022, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 43 条
[1]  
Benediktsson J.A., Ghamisi P., Spectral–spatial classification of hyperspectral remote sensing images, Artech House, (2015)
[2]  
Carneiro T., Da Nobrega R.V.M., Nepomuceno T., Bian G.B., De Albuquerque V.H.C., Reboucas Filho P.P., Performance analysis of Google colaboratory as a tool for accelerating deep learning applications, IEEE Access, 6, pp. 61677-61685, (2018)
[3]  
Chen Y., Jiang H., Li C., Jia X., Ghamisi P., Deep feature extraction and classification of hyperspectral images based on convolutional neural networks, IEEE Trans Geosci Remote Sens, 54, 10, pp. 6232-6251, (2016)
[4]  
Chen Y., Li C., Ghamisi P., Jia X., Gu Y., Deep fusion of remote sensing data for accurate classification, IEEE Geosci Remote Sens Lett, 14, 8, pp. 1253-1257, (2017)
[5]  
Chen Y., Lin Z., Zhao X., Wang G., Gu Y., Deep learning-based classification of hyperspectral data, IEEE J Select Top Appl Earth Observ Remote Sens, 7, 6, pp. 2094-2107, (2014)
[6]  
Eitel J.U., Hofle B., Vierling L.A., Abellan A., Asner G.P., Deems J.S., Glennie C.L., Joerg P.C., LeWinter A.L., Magney T.S., Et al., Beyond 3-d: the new spectrum of lidar applications for earth and ecological sciences, Remote Sens Environ, 186, pp. 372-392, (2016)
[7]  
Gader P., Zare A., Close R., Aitken J., Tuell G., Muufl gulfport hyperspectral and lidar airborne data set, pp. 2013-2570, (2013)
[8]  
Ghamisi P., Plaza J., Chen Y., Li J., Plaza A.J., Advanced spectral classifiers for hyperspectral images: a review, IEEE Geosci Remote Sens Mag, 5, 1, pp. 8-32, (2017)
[9]  
Ghamisi P., Yokoya N., Li J., Liao W., Liu S., Plaza J., Rasti B., Plaza A., Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art, IEEE Geosci Remote Sens Mag, 5, 4, pp. 37-78, (2017)
[10]  
Gomez-Chova L., Tuia D., Moser G., Camps-Valls G., Proc IEEE, 103, 9, pp. 1560-1584, (2015)