Nontrivial solutions for Schrödinger-Kirchhoff-type problem in RN

被引:0
作者
Bitao Cheng
机构
[1] Qujing Normal University,College of Mathematics and Information Science
来源
Boundary Value Problems | / 2013卷
关键词
Schrödinger-Kirchhoff-type problem; Sobolev’s embedding theorem; critical point; variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we use variational methods to prove two existence results of nontrivial solutions for the Schrödinger-Kirchhoff-type problem
引用
收藏
相关论文
共 34 条
  • [1] Ackermann N(2006)A superposition principle and multibump solutions of periodic Schrödinger equation J. Funct. Anal 234 277-320
  • [2] del Pino M(1996)Local mountain passes for semilinear elliptic problems in unbounded domains Calc. Var 4 121-137
  • [3] Felmer PL(1996)Nontrivial solution of a semilinear Schrödinger equation Commun. Partial Differ. Equ 21 1431-1449
  • [4] Troestler C(1997)Some remarks on nonlocal elliptic and parabolic problems Nonlinear Anal 30 4619-4627
  • [5] Willem M(2005)Positive solutions for a quasilinear elliptic equation of Kirchhoff type Comput. Math. Appl 49 85-93
  • [6] Chipot M(2009)Existence results of positive solutions of Kirchhoff type problems Nonlinear Anal 71 4883-4892
  • [7] Lovat B(2012)Multiple solutions for a class of Kirchhoff type problem with concave nonlinearity Nonlinear Differ. Equ. Appl 19 521-537
  • [8] Alves CO(2012)New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems J. Math. Anal. Appl 394 488-495
  • [9] Corrêa FJSA(2009)Infinitely many positive solutions for Kirchhoff-type problems Nonlinear Anal 70 1407-1414
  • [10] Ma TF(2003)Positive solutions for a nonlinear nonlocal elliptic transmission problem Appl. Math. Lett 16 243-248