Comparison of machine learning–based algorithms using corneal asymmetry vs. single-metric parameters for keratoconus detection

被引:0
作者
Gaurav Prakash
Chandrashan Perera
Vishal Jhanji
机构
[1] University of Pittsburgh School of Medicine,Department of Ophthalmology
[2] Byers Eye Institute at Stanford University School of Medicine,Ophthalmology
来源
Graefe's Archive for Clinical and Experimental Ophthalmology | 2023年 / 261卷
关键词
Keratoconus; Machine learning; Asymmetry; Detection;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2335 / 2342
页数:7
相关论文
共 57 条
[1]  
Jhanji V(2011)Management of keratoconus: current scenario Br J Ophthalmol 95 1044-1050
[2]  
Sharma N(2010)Keratoconus: a review Cont Lens Anterior Eye 33 157-66
[3]  
Vajpayee RB(2009)Evaluation of keratometric, pachymetric, and elevation parameters of keratoconic corneas with pentacam Cornea 28 976-980
[4]  
Romero-Jimenez M(2016)Predictive analysis between topographic, pachymetric and wavefront parameters in keratoconus, suspects and normal eyes: creating unified equations to evaluate keratoconus Curr Eye Res 41 334-342
[5]  
Santodomingo-Rubido J(2015)A combination of topographic and pachymetric parameters in keratoconus diagnosis Cont Lens Anterior Eye 38 357-362
[6]  
Mihaltz K(2012)Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data Ophthalmology 119 2231-2238
[7]  
Kovacs I(2016)The ABCD grading system Klin Monbl Augenheilkd 233 701-707
[8]  
Takacs A(2016)Assessing progression of keratoconus: novel tomographic determinants Eye Vis (Lond) 3 6-487
[9]  
Prakash G(2008)CLMI: the cone location and magnitude index Cornea 27 480-184
[10]  
Suhail M(2012)Revisiting corneal topography for the diagnosis of keratoconus: use of Rabinowitz’s KISA% index Clin Ophthalmol 6 181-1539