Analysis of an Optimization Method for Solving the Problem of Complex Heat Transfer with Cauchy Boundary Conditions

被引:0
|
作者
P. R. Mesenev
A. Yu. Chebotarev
机构
[1] Institute of Applied Mathematics,
[2] Far Eastern Branch,undefined
[3] Russian Academy of Sciences,undefined
[4] Regional Scientific and Educational Mathematical Center “Far Eastern Center for Mathematical Research”,undefined
关键词
equations of radiative-conductive heat transfer; diffusion approximation; optimal control problem; Cauchy conditions;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:33 / 41
页数:8
相关论文
共 50 条
  • [31] A method for solving the Cauchy problem for the Laplace equation
    T. Sh. Kal’menov
    U. A. Iskakova
    Doklady Mathematics, 2008, 78 : 874 - 876
  • [32] A method for solving the Cauchy problem for the Laplace equation
    Kal'menov, T. Sh.
    Iskakova, U. A.
    DOKLADY MATHEMATICS, 2008, 78 (03) : 874 - 876
  • [33] OPTIMIZATION AS AN ANALYSIS TOOL FOR HUMAN COMPLEX PROBLEM SOLVING
    Sager, Sebastian
    Barth, Carola M.
    Diedam, Holger
    Engelhart, Michael
    Funke, Joachim
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) : 936 - 959
  • [34] Boundary optimal control problem of complex heat transfer model
    Grenkin, Gleb V.
    Chebotarev, Alexander Yu.
    Kovtanyuk, Andrey E.
    Botkin, Nikolai D.
    Hoffmann, Karl-Heinz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) : 1243 - 1260
  • [35] An Immersed Boundary Method for Complex Flow and Heat Transfer
    F. Paravento
    M. J. Pourquie
    B. J. Boersma
    Flow, Turbulence and Combustion, 2008, 80 : 187 - 206
  • [36] An immersed boundary method for complex flow and heat transfer
    Paravento, F.
    Pourquie, M. J.
    Boersma, B. J.
    FLOW TURBULENCE AND COMBUSTION, 2008, 80 (02) : 187 - 206
  • [37] INTEGRAL METHOD OF SOLVING GENERAL PROBLEM OF HEAT AND MATTER TRANSFER
    TOLUBINSKII, EV
    DOKLADY AKADEMII NAUK SSSR, 1965, 160 (06): : 1289 - +
  • [38] An iterative method to solve the heat transfer problem under the non-linear boundary conditions
    Zhu, Zhenggang
    Kaliske, Michael
    HEAT AND MASS TRANSFER, 2012, 48 (02) : 283 - 290
  • [39] An iterative method to solve the heat transfer problem under the non-linear boundary conditions
    Zhenggang Zhu
    Michael Kaliske
    Heat and Mass Transfer, 2012, 48 : 283 - 290
  • [40] Iterative Method for Solving a Problem with Mixed Boundary Conditions for Biharmonic Equation
    Dang Quang A
    Le Tung Son
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2009, 1 (05) : 683 - 698