Dark energy constraints from Pantheon+ Ia supernovae data

被引:0
作者
Sergio Torres-Arzayus
机构
[1] International Center for Relativistic Astrophysics Network,
来源
Astrophysics and Space Science | 2024年 / 369卷
关键词
Cosmology; Dark energy; Hubble tension; Hubble constant; Cosmological parameters;
D O I
暂无
中图分类号
学科分类号
摘要
Measurements of the current expansion rate of the Universe, H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{0}$\end{document}, using standard candles, disagree with those derived from observations of the Cosmic Microwave Background (CMB). This discrepancy, known as the Hubble tension, is substantial and suggests the possibility of revisions to the standard cosmological model (Cosmological constant Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda $\end{document} and cold dark matter – ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document}). Dynamic dark energy (DE) models that introduce deviations in the expansion history relative to ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} could potentially explain this tension. We used Type Ia supernovae (SNe) data to test a dynamic DE model consisting of an equation of state that varies linearly with the cosmological scale factor a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a$\end{document}. To evaluate this model, we developed a new statistic (the Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\alpha }$\end{document} statistic) used in conjunction with an optimization code that minimizes its value to obtain model parameters. The Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\alpha }$\end{document} statistic reduces bias errors (in comparison to the χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi ^{2}$\end{document} statistic) because it retains the sign of the residuals, which is meaningful in testing the dynamic DE model as the deviations in the expansion history introduced by this model act asymmetrically in redshift space. The DE model fits the SNe data reasonably well, but the available SNe data lacks the statistical power to discriminate between ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} and alternative models. To further assess the model using CMB data, we computed the distance to the last scattering surface and compared the results with that derived from the Planck observations. Although the simple dynamic DE model tested does not completely resolve the tension, it is not ruled out by the data and could still play a role alongside other physical effects.
引用
收藏
相关论文
共 50 条
[1]  
Abbott B.P.(2017)A gravitational-wave standard siren measurement of the Hubble constant Nature 551 85-88
[2]  
Brout D.(2022)The Pantheon+ analysis: cosmological constraints Astrophys. J. 938 110-223
[3]  
Scolnic D.(2001)Accelerating universes with scaling dark matter Int. J. Mod. Phys. D 10 213-586
[4]  
Popovic B.(2021)On the Hubble constant tension in the sne ia pantheon sample Astrophys. J. 912 150-847
[5]  
Chevallier M.(2002)Accelerated universe from gravity leaking to extra dimensions Phys. Rev. D 65 34-2604
[6]  
Polarski D.(2021)In the realm of the Hubble tension – a review of solutions Class. Quantum Gravity 38 274-undefined
[7]  
Dainotti M.G.(2019)The Carnegie-Chicago Hubble program. VIII. An independent determination of the Hubble constant based on the tip of the red giant branch Astrophys. J. 882 565-undefined
[8]  
Simone B.D.(2003)Exploring the expansion history of the universe Phys. Rev. Lett. 90 835-undefined
[9]  
Schiavone T.(2004)Probing gravitation, dark energy, and acceleration Phys. Rev. D 70 113-undefined
[10]  
Deffayet C.(2019)Interacting scenarios with dynamical dark energy: observational constraints and alleviation of the Phys. Rev. D 100 2590-undefined